A futile chase

Problem: Published as a challenge to students and teachers in the September 2012 issue of The Physics Teacher.

There are two turtles initially separated by a distance d. Turtle A moves in a straight line with constant velocity V and turtle B always follows turtle A with constant speed V . The question is how much will be the separation between the turtles after a long time. The initial conditions in the magazine had A's velocity perpendicular to the vector that separates the turtles, but we can generalize this.

Solution: As the chase progresses turtle A's velocity will always be in the positive y-direction while turtle B's velocity will always be directed towards A.

We change the origin of coordinates to the position of turtle A. Then the relative velocity of turtle B will always be the sum of two vectors: V in the negative y -direction and V in the radial direction towards the origin as shown in the figure:

The relative velocity can be written in terms of radial and tangential components using angle θ shown in the figure as variable.
$v_{r}=\frac{d r}{d t}=-v+v \sin \theta$
$v_{\theta}=r \frac{d \theta}{d t}=v \cos \theta$

To solve the equations we can divide one by the other, which leaves a differential equation that can be separated:
$\frac{v_{r}}{v_{\theta}}=\frac{\frac{d r}{d t}}{r \frac{d \theta}{d t}}=\frac{-v+v \sin \theta}{v \cos \theta} \rightarrow \frac{d r}{r d \theta}=\frac{-1+\sin \theta}{\cos \theta} \rightarrow \frac{d r}{r}=\frac{-1+\sin \theta}{\cos \theta} d \theta$
We can integrate the two sides of the equation with the understanding that r will start at d and finish at a final value d_{f} and the angle will start at zero and finish at $\pi / 2$. Notice that when the angle is $\pi / 2$ the relative velocity will be zero, so the second turtle will approach that angle after a long time.

The integrals are:
$\int_{d}^{d_{f}} \frac{d r}{r}=\int_{0}^{\pi / 2} \frac{-1+\sin \theta}{\cos \theta} d \theta \rightarrow \ln \frac{d_{f}}{d}=2 \ln \frac{\sqrt{2}}{2} \rightarrow d_{f}=\frac{d}{2}$
So, the solution is that after a long time the distance between the turtles will be $\mathrm{d} / 2$.
A generalization: The solution above offers us a more general case: If turtle A's velocity is not in the positive y-direction, but at an angle φ with the positive x -axis, then the distance after a long time will be:

$$
d_{f}=d \sin ^{2}(\phi / 2)
$$

