Fox Trot

Problem: Published as a challenge to students and teachers in the September 2017 issue of The Physics Teacher.

You have a rabbit chasing a fox (yes, not the other way around). The fox moves in a straight line with constant velocity v and the rabbit has a constant speed u , but his velocity is always directed towards the fox. Initially the distance between them is L and move with velocities perpendicular to each other.

We want to know the distance covered by the rabbit to reach the fox.
Solution: We take a coordinate system where the fox moves in the y-axis and the rabbit is initially on the x -axis at a distance L from the origin. As the chase progresses fox A's velocity will always be in the positive y-direction while rabbit B's velocity will always be directed towards A.

We change the origin of coordinates to the position of A. Then the relative velocity of B is the sum of two vectors: v in the negative y -direction and u in the radial direction towards the origin as shown in the figure:

The relative velocity can be written in terms of radial and tangential components using angle θ shown in the figure as variable.
$v_{r}=\frac{d r}{d t}=-u+v \sin \theta$
$v_{\theta}=r \frac{d \theta}{d t}=v \cos \theta$

To solve the equations we can divide one by the other, which leaves a differential equation that can be separated:
$\frac{v_{r}}{v_{\theta}}=\frac{\frac{d r}{d t}}{r \frac{d \theta}{d t}}=\frac{-u+v \sin \theta}{v \cos \theta} \rightarrow \frac{d r}{r d \theta}=\frac{-k+\sin \theta}{\cos \theta} \rightarrow \frac{d r}{r}=\frac{-k+\sin \theta}{\cos \theta} d \theta$

Here k is the ratio u / v. Integrating:
$\int_{L}^{r} \frac{d r}{r}=\int_{0}^{\theta} \frac{-k+\sin \theta}{\cos \theta} d \theta$
$r=\frac{L}{\cos \theta}\left(\frac{1-\sin \theta}{1+\sin \theta}\right)^{k / 2}$
We get $r=0$ when θ reaches $\pi / 2$, which we will use as the limit of integration below.
Replacing r in equation $\left({ }^{*}\right)$
$\frac{L}{v \cos \theta \cos \theta}\left(\frac{1-\sin \theta}{1+\sin \theta}\right)^{k / 2} d \theta=d t$

Integrating
$t=\frac{L}{v} \int_{0}^{\pi / 2} \frac{1}{\cos \theta \cos \theta}\left(\frac{1-\sin \theta}{1+\sin \theta}\right)^{k / 2} d \theta$

Change of variables to integrate
$t=\frac{L}{2 v} \int_{0}^{\pi / 4} \tan ^{k-2} \theta\left(1+\tan ^{2} \theta\right) d \tan \theta$
$t=\frac{L}{2 v} \int_{0}^{1} x^{k-2}\left(1+x^{2}\right) d x$

$$
t=\frac{L}{2 v}\left(\frac{1}{k-1}+\frac{1}{k+1}\right)=L\left(\frac{u}{u^{2}-v^{2}}\right)
$$

Finally we multiply the time by the speed to get the distance:

$$
d=L\left(\frac{u^{2}}{u^{2}-v^{2}}\right)
$$

