
Fox Trot 

Problem: Published as a challenge to students and teachers in the September 2017 issue of The 

Physics Teacher.  

You have a rabbit chasing a fox (yes, not the other way around). The fox moves in a straight line 

with constant velocity v and the rabbit has a constant speed u, but his velocity is always directed 

towards the fox. Initially the distance between them is L and move with velocities perpendicular 

to each other. 

We want to know the distance covered by the rabbit to reach the fox. 

Solution: We take a coordinate system where the fox moves in the y-axis and the rabbit is 

initially on the x-axis at a distance L from the origin. As the chase progresses fox A’s velocity 

will always be in the positive y-direction while rabbit B´s velocity will always be directed 

towards A. 

 

We change the origin of coordinates to the position of A. Then the relative velocity of B is the 

sum of two vectors: v in the negative y-direction and u in the radial direction towards the origin 

as shown in the figure: 

 

The relative velocity can be written in terms of radial and tangential components using angle θ  

shown in the figure as variable. 
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To solve the equations we can divide one by the other, which leaves a differential equation that 

can be separated: 
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Here k is the ratio u/v. Integrating:  
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We get r=0 when θ reaches π/2, which we will use as the limit of integration below. 

Replacing r in equation (*) 
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Integrating 

 








+

−
=

2/

0

2/

sin1

sin1

coscos

1
π

θ
θ

θ

θθ
d

v

L
t

k

 

Change of variables to integrate 
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Finally we multiply the time by the speed to get the distance: 
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