Just pulling through...

Problem: Published as a challenge to students and teachers in the October 2017 issue of The Physics Teacher.

A marble of mass m can slide without friction along a horizontal rod.
The marble is pulled by a light string of length L so that the velocity of the "loose" end of the string is always directed along the string and has a constant magnitude v .

What is the magnitude of the force applied to the string when it makes angle θ with the rod?
Solution: To solve the problem we consider that the marble has coordinates ($\mathrm{X}, 0$)
And the loose end of the string has the coordinates (x, y) given by the equations
$x=X+L \cos \theta$
$y=L \sin \theta$

Taking derivatives to these coordinates and equating them to the components of the velocity we get these equations
$\frac{d x}{d t}=\frac{d X}{d t}-\frac{d \theta}{d t} L \sin \theta=v \cos \theta$
$\frac{d y}{d t}=\frac{d \theta}{d t} L \cos \theta=v \sin \theta$
... equations (*)

We notice that the velocity of the marble has this simple form:

$$
\frac{d X}{d t}=v \cos \theta+v \sin \theta \tan \theta=v \sec \theta
$$

Taking another derivative we get the acceleration of the marble.
$\frac{d^{2} X}{d t^{2}}=v \frac{\sin \theta}{\cos ^{2} \theta} \frac{d \theta}{d t}$

Here we can substitute the second equation (*) getting
$\frac{d^{2} X}{d t^{2}}=\frac{v^{2}}{L} \frac{\sin ^{2} \theta}{\cos ^{3} \theta}$

To get the net force on the mable we multiply its acceleration by its mass

$$
F_{n e t}=m \frac{d^{2} X}{d t^{2}}
$$

But this net force is the horizontal component of the force applied by the string, so the force applied by the string is
$F=\frac{m}{\cos \theta} \frac{d^{2} X}{d t^{2}}$

And substituting our earlier result for the acceleration we get

$$
F=\frac{m v^{2}}{L} \frac{\sin ^{2} \theta}{\cos ^{4} \theta}
$$

It is interesting to notice that if the initial angle is not zero, this situation cannot be maintained forever...

