Putnam Problem and Richard Feynman

Problem A5 in the Putnam competition in 2005 was calculating the following integral
$I=\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$

When I saw this problem I immediately thought of Richard Feynman and his book "Surely you are joking..." In one of the chapters he describes an integration technique by derivative under the integral sign and yes! It works in this case. Let's see how it is done:

Let's define a function of a new variable $f(y)=\int_{0}^{1} \frac{\ln (y x+1)}{x^{2}+1} d x$

This will allow us to take a derivative. Notice that the original integral is this function evaluated at $\mathrm{y}=1$, also notice that

$$
f(0)=\int_{0}^{1} \frac{\ln (1)}{x^{2}+1} d x=0
$$

Now, with the derivative of this function:
$f^{\prime}(y)=\int_{0}^{1} \frac{x}{x^{2}+1} \frac{1}{x y+1} d x$, which can be expanded in the following terms:
$f^{\prime}(y)=\frac{y}{y^{2}+1} \int_{0}^{1} \frac{1}{x^{2}+1} d x+\frac{1}{y^{2}+1} \int_{0}^{1} \frac{x}{x^{2}+1} d x-\frac{y}{y^{2}+1} \int_{0}^{1} \frac{1}{x y+1} d x$

All of the terms are easily integrated, so we get:

$$
\begin{aligned}
& f^{\prime}(y)=\frac{y}{y^{2}+1} \tan ^{-1}(x)+\frac{1}{2} \frac{1}{y^{2}+1} \ln \left(x^{2}+1\right)-\left.\frac{1}{y^{2}+1} \ln (x y+1)\right|_{x=0} ^{x=1} \\
& f^{\prime}(y)=\frac{y}{y^{2}+1} \frac{\pi}{4}+\frac{1}{2} \frac{1}{y^{2}+1} \ln (2)-\frac{1}{y^{2}+1} \ln (y+1)
\end{aligned}
$$

Since $f(0)=0$, to find $f(1)=I$ we need to integrate $f^{\prime}(y)$ from zero to one

$$
I=\int_{0}^{1}\left[\frac{y}{y^{2}+1} \frac{\pi}{4}+\frac{1}{2} \frac{1}{y^{2}+1} \ln (2)-\frac{1}{y^{2}+1} \ln (y+1)\right] d y
$$

We notice that the third term is equal to I by its own definition, so it can be taken to the left side of the equation and dividing by 2 we get:

$$
I=\frac{1}{2} \int_{0}^{1}\left[\frac{y}{y^{2}+1} \frac{\pi}{4}+\frac{1}{2} \frac{1}{y^{2}+1} \ln (2)\right] d y=\frac{1}{2}\left[\frac{\pi}{4} \frac{1}{2} \ln \left(y^{2}+1\right)+\frac{1}{2} \ln (2) \tan ^{-1}(y)\right]_{y=0}^{y=1}
$$

Finally: $I=\frac{\pi}{8} \ln (2)$

