Calculus

Linear approximation

Problem 1.- A manufacturer's cost is given by
$C(q)=0.1 q^{3}-0.5 q^{2}+500 q+200$
What will be the change in cost if the quantity gets reduced from 4 units to 3.9 units?
Solution: A simple way to evaluate the change would be to get the difference
$\Delta C=C(4)-C(3.9)$
But we can also use the linear approximation
$C(q) \approx C(4)+(q-4) C^{\prime}(4)$

Then
$C(3.9)-C(4) \approx\left\{C(4)+(3.9-4) C^{\prime}(4)\right\}-\left\{C(4)+(4-4) C^{\prime}(4)\right\}$
$\Delta C \approx(3.9-4) C^{\prime}(4)$

And
$C^{\prime}(q)=0.3 q^{2}-q+500$
$C^{\prime}(4)=0.3 \times 4^{2}-4+500=500.8$
So $\quad \Delta C \approx(3.9-4) C^{\prime}(4)=-0.1 \times 500.8=-50.08$
Problem 2.- If the derivative of a function is given by
$f^{\prime}(x)=3-\frac{x^{2}}{3}$
And $f(2)=4$, estimate the value of $f(1.98)$ and $f(2.02)$
Are your approximations overestimations or underestimations?
What happens if $f(3)=7$ and you want to estimate $f(2.98)$ and $f(3.02)$?
Solution: Using the linear approximation close to $x=2$ we get
$f(x) \approx f(2)+(x-2) f^{\prime}(2)$

In the problem $f^{\prime}(2)=3-\frac{2^{2}}{3}=1.67$
So $\quad f(1.98) \approx f(2)+(1.98-2) \times 1.67=3.97$
And $\quad f(2.02) \approx f(2)+(2.02-2) \times 1.67=4.03$

Since the derivative is decreasing close to $x=2$, the function is concave downwards, which means that using a linear approximation will overestimate the values in both cases.

Since $f^{\prime}(3)=0$, the linear approximation gives us
$f(2.98) \approx f(3)=7$ and
$f(3.02) \approx f(3)=7$

So, to get a better approximation we would need a quadratic approximation, not linear.

Problem 3.- Using the linear approximation, estimate the value of

$$
\sqrt[4]{4100}+\sqrt[3]{4100}+3 \sqrt{4100}
$$

Solution: We notice that 4100 is close to $2^{12}=4096$, and we define the function

$$
f(x)=\sqrt[4]{x}+\sqrt[3]{x}+3 \sqrt{x}
$$

So
$f(4096)=\sqrt[4]{2^{12}}+\sqrt[3]{2^{12}}+3 \sqrt{2^{12}}$
$f(4096)=2^{3}+2^{4}+3 \times 2^{6}$
$f(4096)=216$
Also $\quad f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}+\frac{1}{3} x^{-2 / 3}+3 \frac{1}{2} x^{-1 / 2}$
$f^{\prime}(4096)=\frac{1}{4}\left(2^{12}\right)^{-3 / 4}+\frac{1}{3}\left(2^{12}\right)^{-2 / 3}+3 \frac{1}{2}\left(2^{12}\right)^{-1 / 2}$
$f^{\prime}(4096)=\frac{1}{4}\left(2^{-9}\right)+\frac{1}{3}\left(2^{-8}\right)+3 \frac{1}{2}\left(2^{-6}\right)$
For the value of 4100 , using the linear approximation:
$f(4100) \approx f(4096)+(4100-4096) f^{\prime}(4096) \approx 216.1$

