
Electromagnetism 

Electric dipole 
 

Problem 1.- Calculate the dipole moment of a spherical surface of radius R that has charge 

density given by the following function in spherical coordinates: 
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Solution:  By definition, the dipole moment is the following integral. 
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We notice that due to symmetry, there is only dipole in the z-direction, so the integral can be 

simplified to: 
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We consider differentials of charge given by differentials of area times the surface density. 
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Putting them together we get: 
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So, the dipole is: 
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Problem 2.- Calculate the electric energy due to the electric field of a dipole moment p located 

at the origin of coordinates for the space outside a sphere of radius R centered at the dipole. 

 

Solution:  The electric field due to a dipole in spherical coordinates is given by: 
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The energy density due to the electric field is 
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density over the space outside the radius R: 
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Integrating, we get: 
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We notice that if R went to zero, the energy would diverge.  

 

 

 

 

 

 


