Electromagnetism
Electric dipole

Problem 1.- Calculate the dipole moment of a spherical surface of radius R that has charge
density given by the following function in spherical coordinates:

o=0,cosf

Solution: By definition, the dipole moment is the following integral.
p=|rdg

We notice that due to symmetry, there is only dipole in the z-direction, so the integral can be
simplified to:
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We consider differentials of charge given by differentials of area times the surface density.
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Putting them together we get:
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So, the dipole is:
p= %xa()R3 2

Problem 2.- Calculate the electric energy due to the electric field of a dipole moment p located
at the origin of coordinates for the space outside a sphere of radius R centered at the dipole.

Solution: The electric field due to a dipole in spherical coordinates is given by:
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The energy density due to the electric field is u =d—U
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density over the space outside the radius R:
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Integrating, we get:
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We notice that if R went to zero, the energy would diverge.



