
Electromagnetism 
 

Gauss’s Law 

 

Problem 1.- Find the electric potential everywhere produced by a spherical distribution of 

charge whose density is given by:  

 

( )

0

a R r r R

r R
ρ

− <
= 

≥
  

 

Solution: First, we find the electric field: 

 

For Rr > , outside the sphere 
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For Rr < , inside the sphere 
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To find the potential we integrate: 

 

For Rr > , outside the sphere 
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Notice the value of the potential at the boundary is: 
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For Rr < , inside the sphere 
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Problem 2.- A sphere of radius R has a volume distribution of charge given by 3
Cr=ρ , where 

C is a constant and r is the distance to the center of the sphere. Calculate the magnitude of the 

electric field at r = R/2. 

 

Solution: According to Gauss’s theorem: 
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left side of the equation is: ERE
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The charge enclosed can be calculated by integration. Notice that you cannot just multiply the 

density times the volume because the density is not constant. 
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And using this result in the equation above we get: 
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Problem 3.- Calculate the electric field at a point P located at a distance r from the axis of a  

long cylindrical and homogeneous distribution of charge of density ρ  and radius R. 

 

Solution: One possibility is that the point is outside the cylinder, like in this configuration: 

 

 
 

Consider an enclosing surface with the shape of a cylindrical prism of radius r and height h. 

 

 

 According to Gauss’s theorem: 
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� , so in this case: 
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After simplification we get:  
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Notice that the electric field drops as 1/r as opposed to the usual 1/r2 of point charges. 

The other possibility is that r < R (P inside the cylinder) in which case the equation is: 
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And after simplification: 
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In this case the electric field is linearly proportional to the distance to the center, which is the 

same for a sphere uniformly charged. 


