Electromagnetism

Gauss’s Law

Problem 1.- Find the electric potential everywhere produced by a spherical distribution of
charge whose density is given by:
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Solution: First, we find the electric field:

For r > R, outside the sphere
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For r < R, inside the sphere
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To find the potential we integrate:
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Notice the value of the potential at the boundary is: V(R) = 3

For r < R, inside the sphere
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Problem 2.- A sphere of radius R has a volume distribution of charge given by p = Cr’, where

C is a constant and r is the distance to the center of the sphere. Calculate the magnitude of the
electric field at r = R/2.
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Solution: According to Gauss’s theorem: CﬁE -da = , for a point located at r = R/2 the
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left side of the equation is: §E -da = 4%(%) E =7R’E

The charge enclosed can be calculated by integration. Notice that you cannot just multiply the
density times the volume because the density is not constant.
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And using this result in the equation above we get: 7R*E =



Problem 3.- Calculate the electric field at a point P located at a distance r from the axis of a
long cylindrical and homogeneous distribution of charge of density p and radius R.

Solution: One possibility is that the point is outside the cylinder, like in this configuration:
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According to Gauss’s theorem: CJSE -da = =endosed g in this case:
80
2
E2zrh = LI7R
80
After simplification we get:
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Notice that the electric field drops as 1/r as opposed to the usual 1/r* of point charges.
The other possibility is that r < R (P inside the cylinder) in which case the equation is:
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And after simplification:
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In this case the electric field is linearly proportional to the distance to the center, which is the
same for a sphere uniformly charged.



