Electromagnetism

Gauss law

Problem 1.- Find the electric potential everywhere produced by a spherical distribution of charge whose density is given by:
$\rho=a(R-r) \quad r<R$
Solution: First, we find the electric field:
For $r>R$, outside the sphere
$E=\frac{k}{r^{2}} \int_{0}^{R} a(R-r) 4 \pi r^{2} d r=\frac{4 \pi k a}{r^{2}} \int_{0}^{R}(R-r) r^{2} d r=\frac{4 \pi k a}{r^{2}}\left(\frac{R^{4}}{3}-\frac{R^{4}}{4}\right)=\frac{\pi k a R^{4}}{3 r^{2}}$
For $r<R$, inside the sphere
$E=\frac{k}{r^{2}} \int_{0}^{r} a(R-r) 4 \pi r^{2} d r=\frac{4 \pi k a}{r^{2}} \int_{0}^{r}(R-r) r^{2} d r=\frac{4 \pi k a}{r^{2}}\left(\frac{R r^{3}}{3}-\frac{r^{4}}{4}\right)=4 \pi k a\left(\frac{R r}{3}-\frac{r^{2}}{4}\right)$
Now to find the potential we integrate:
For $r>R$, outside the sphere $\quad V=-\int_{\infty}^{r} \frac{\pi k a R^{4}}{3 r^{2}} d r=\frac{\pi k a R^{4}}{3 r}$
Notice the value of the potential at the boundary is: $V(R)=\frac{\pi k a R^{3}}{3}$
For $r<R$, inside the sphere
$V=V(R)-\int_{R}^{r} 4 \pi k a\left(\frac{R r}{3}-\frac{r^{2}}{4}\right) d r=V(R)+\left.4 \pi k a\left(\frac{R r^{2}}{6}-\frac{r^{3}}{12}\right)\right|_{r} ^{R}$
$V=\frac{\pi k a R^{3}}{3}+4 \pi k a\left(\frac{R^{3}}{6}-\frac{R^{3}}{12}\right)-4 \pi k a\left(\frac{R r^{2}}{6}-\frac{r^{3}}{12}\right)$
$V=\frac{\pi k a}{3}\left[2 R^{3}-2 R r^{2}+r^{3}\right]$

Problem 2.- A sphere of radius R has a volume distribution of charge given by $\rho=C r^{3}$, where C is a constant and r is the distance to the center of the sphere. Calculate the magnitude of the electric field at $r=R / 2$.

Solution: According to Gauss's theorem: $\oint \vec{E} \cdot d \vec{a}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}$, for a point located at $r=R / 2$ the left side of the equation is: $\oint \vec{E} \cdot d \vec{a}=4 \pi\left(\frac{R}{2}\right)^{2} E=\pi R^{2} E$

The charge enclosed can be calculated by integration. Notice that you cannot just multiply the density times the volume because the density is not constant.
$Q_{\text {enclosed }}=\int_{0}^{R / 2} \rho d V=\int_{0}^{R / 2} C r^{3}\left(4 \pi r^{2} d r\right)=4 \pi C \int_{0}^{R / 2} r^{5} d r=\frac{4 \pi C\left(\frac{R}{2}\right)^{6}}{6}=\frac{\pi C R^{6}}{96}$

And using this result in the equation above we get: $\pi R^{2} E=\frac{\pi C R^{6}}{96 \varepsilon_{\circ}} \rightarrow E=\frac{C R^{4}}{96 \varepsilon_{o}}$

