Electromagnetism

Ampere law

Problem 1.- Calculate the magnetic field at point P due to the three long wires whose cross sections are shown in the figure.

Solution: The magnetic field vectors produced by the wires are shown in the figure:

The magnitudes of the vectors are:
$B_{1}=\frac{\mu_{0} I_{1}}{2 \pi R}=\frac{\left(4 \pi \times 10^{-7}\right)(150)}{2 \pi \sqrt{8^{2}+4^{2}}}=\frac{300 \times 10^{-7}}{\sqrt{80}} T$

$$
\begin{aligned}
& B_{2}=\frac{\mu_{0} I_{2}}{2 \pi R}=\frac{\left(4 \pi \times 10^{-7}\right)(250)}{2 \pi \sqrt{6^{2}+4^{2}}}=\frac{500 \times 10^{-7}}{\sqrt{52}} T \\
& B_{3}=\frac{\mu_{0} I_{3}}{2 \pi R}=\frac{\left(4 \pi \times 10^{-7}\right)(250)}{2 \pi \sqrt{4^{2}+4^{2}}}=\frac{500 \times 10^{-7}}{\sqrt{32}} T
\end{aligned}
$$

We need to write the vectors as components to be able to add them. The geometry of the problem indicates the angles, for example notice that the angle that B_{3} makes with the horizontal is the same as the angle between the vertical and the line that connects I_{3} with point P (shown in the figure as angle θ_{3}), likewise with the other angles.

$$
\begin{aligned}
& \vec{B}_{1}=\frac{300 \times 10^{-7}}{\sqrt{80}} T\left(-\cos \theta_{1},-\sin \theta_{1}\right)=\frac{300 \times 10^{-7}}{\sqrt{80}} T\left(-\frac{8}{\sqrt{80}},-\frac{4}{\sqrt{80}}\right) \\
& \vec{B}_{2}=\frac{500 \times 10^{-7}}{\sqrt{52}} T\left(-\cos \theta_{2},-\sin \theta_{2}\right)=\frac{500 \times 10^{-7}}{\sqrt{52}} T\left(-\frac{6}{\sqrt{52}},-\frac{4}{\sqrt{52}}\right) \\
& \vec{B}_{3}=\frac{500 \times 10^{-7}}{\sqrt{32}} T\left(\cos \theta_{3}, \sin \theta_{3}\right)=\frac{500 \times 10^{-7}}{\sqrt{32}} T\left(\frac{4}{\sqrt{32}}, \frac{4}{\sqrt{32}}\right) \\
& \vec{B}_{1}=\left(-\frac{24}{80},-\frac{12}{80}\right) \times 10^{-5} T \\
& \vec{B}_{2}=\left(-\frac{30}{52},-\frac{20}{52}\right) \times 10^{-5} T \\
& \vec{B}_{3}=\left(\frac{20}{32}, \frac{20}{32}\right) \times 10^{-5} T \\
& \vec{B}_{1}+\vec{B}_{2}+\vec{B}_{3}=(-0.252,0.0904) \times 10^{-5} T
\end{aligned}
$$

Problem 2.- Two long cables are parallel to the x-axis. One cable is overhead at a height $h=9 m$ above the ground and carries a current $\mathrm{I}_{1}=810 \mathrm{~A}$. The other cable is at ground level, carries a current of $\mathrm{I}_{2}=625 \mathrm{~A}$ and is at a distance $\mathrm{d}=5 \mathrm{~m}$ from the X -axis. Calculate the magnetic field at point P .

Solution:

$$
\begin{aligned}
& B_{1}=\frac{\mu_{0} I_{1}}{2 \pi R_{1}}=\frac{4 \pi \times 10^{-7} \times 810}{2 \pi \times 9}=1.8 \times 10^{-5} \\
& B_{2}=\frac{\mu_{0} I_{2}}{2 \pi R_{2}}=\frac{4 \pi \times 10^{-7} \times 625}{2 \pi \times 5}=2.5 \times 10^{-5} \\
& \vec{B}=(0,18 \mu T,-25 \mu T)
\end{aligned}
$$

Problem 3.- Two long cables cross each other at 90 degrees as shown in the figure. One cable is parallel to the x -axis but at a height $\mathrm{h}=10 \mathrm{~m}$ above the ground and carries a current $\mathrm{I}_{1}=150 \mathrm{~A}$. The other cable is at ground level, parallel to the y axis and carries a current of $I_{2}=450 \mathrm{~A}$. Calculate the magnetic field at point $\mathrm{P}=(5,0,0)$

Solution:

Ampere's law gives us the magnetic field produced by each wire:

$$
\begin{aligned}
& B_{1}=\frac{\mu_{0} I_{1}}{2 \pi r_{1}}=\frac{4 \pi \times 10^{-7} \times 150}{2 \pi r(10)}=3 \mu T \\
& B_{2}=\frac{\mu_{0} I_{2}}{2 \pi r_{2}}=\frac{4 \pi \times 10^{-7} \times 450}{2 \pi r(5)}=18 \mu T
\end{aligned}
$$

The direction of each vector is given by the right hand rule, so the magnetic field is:
$\vec{B}=(0,3 \mu T,-18 \mu T)$

