Electromagnetism

Faraday law

Problem 1.- A solenoid is being wound around a plastic cylinder of radius R. There is a magnetic field of magnitude B parallel to the axis of the cylinder. Calculate the emf induced between the open ends of the wire knowing that the rate of winding is N turns per second.

Solution: Faraday's law: $e m f=-\frac{d \phi}{d t}=-\frac{d N B A \sin \angle_{A}^{B}}{d t}=-N B \pi R^{2}$
Problem 2.- A copper ring has a resistance $\mathrm{R}=0.15 \Omega$, a radius $\mathrm{r}=0.25 \mathrm{~m}$ and is in a constant magnetic field $\mathrm{B}=0.9$ tesla perpendicular to the plane of the ring. Then, the magnetic field is reduced to zero, which induces a current in the ring. Calculate the total charge that passes through a given point in the ring.

Solution: $e m f=I R=\frac{d Q}{d t} R=\frac{d \phi}{d t} \rightarrow Q=\frac{\Delta \phi}{R}=\frac{N B A}{R}=\frac{0.9 \times \pi \times 0.25^{2}}{0.15}=\mathbf{1 . 1 8} \mathbf{C}$

Problem 3.- Consider a solar panel that has a length of 40 m in orbit moving at a speed of 7,900 m / s. Calculate the voltage difference between the ends of the panel if the magnetic field of the earth at a certain instant is $30 \mu \mathrm{~T}$ and makes 90 degrees with the panel and its velocity.

Solution: $\mathrm{emf}=B v L=\left(30 \times 10^{-6} T\right)(7900 \mathrm{~m} / \mathrm{s})(40 \mathrm{~m})=9.48$ volts
Problem 4.- A circuit is built by connecting a resistance $\mathrm{R}=2 \Omega$ to a conducting wire in the shape of a U with width $\mathrm{w}=0.5 \mathrm{~m}$, and a sliding conducting bar that closes the circuit. Consider that this circuit is in a region where the magnetic field is $\mathrm{B}=1 \mathrm{~T}$ perpendicular to the plane of the circuit and the resistances of the wire and bar are negligible.

a) Calculate the emf if the bar moves to the right at a speed $\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
b) Calculate the induced current in case (a). Is the direction indicated in the drawing correct?
c) Calculate the speed v necessary to induce a current of 0.5 A
d) Is it reasonable to ignore the magnetic field created by the induced current in each case?

