Electronics

Diodes dynamic response

Problem 1.- In the circuit shown below a sample of the AC voltage is taken and controlled by the DC voltage. Calculate the voltage in the load resistance V_{L} in the conditions shown.
Take the knee voltage in the diode as 0.7 V and its I-V curve as described by the Shockley equation.

Solution: We first analyze the circuit in DC. In this case, the capacitor behaves as an open circuit and the diode current is
$I_{D}=\frac{3-0.7}{100}=23 \mathrm{~mA}$
With this result, in AC the diode will behave as a resistance given by
$r_{d}=\frac{26 m V}{23 m A}=1.13 \Omega$
In AC, the capacitor will behave as a short circuit and hence the voltage in the load will be the same as in the diode. This can be calculated as a voltage divisor, obtaining:
$V_{L}=120 \mathrm{mV} \frac{1.13 / / 100}{1.13 / / 100+100}=1.33 \mathrm{mV}$
Problem 1a.- Similar to the previous problem, the circuit is used to get a sample of the AC controlled by the DC voltage. Calculate the DC voltage to get a dynamic resistance of 1ohm and calculate the value of V_{L}.
Take the knee of the diode at 0.7 V and its I-V curve given by the Shockley equation.

Solution: The DC analysis gives us
$I_{D C}=\frac{V_{D C}-0.7 V}{100 \Omega}$
Then, based on this current, the dynamic resistance will be
$r=\frac{26 m V}{I_{D C}}=\frac{100 \Omega \times 26 m V}{V_{D C}-0.7 V}=\frac{2.6 \mathrm{~V} \Omega}{V_{D C}-0.7 V}$
We want this to be 1 ohm, so
$1 \Omega=\frac{2.6 \mathrm{~V} \Omega}{V_{D C}-0.7 \mathrm{~V}} \rightarrow V_{D C}=3.3 \mathrm{~V}$
In AC, the capacitor will put the 100 ohm load resistance in parallel with the dynamic resistance and the AC voltage will be approximately 1% of the source voltage, which is $250 \mu \mathrm{~V}$.

