
Electronics

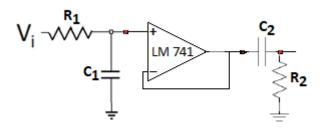
Band pass filter

Problem 1.- For a PLC (Power Line Carrier) application, design a band pass filter from 200kHz to 300kHz and drops of 40dB per decade on both sides of the band. Use only two opamps.

Solution: The solution uses two active filters with two poles, as shown below:

The first stage is the low pass filter and we select the components to have a cutoff frequency of 300kHz

$$R_1 C_1 = R_2 C_2 = \frac{1}{2\pi \times 300 kHz}$$


For example with $R = 3.3k\Omega$ and C = 160pFFor the second stage $R = 3.6k\Omega$ and C = 220pF will give 200kHz of cutoff frequency.

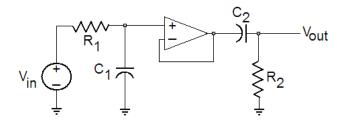
 R_G and R_F can give an additional gain in the middle of the band, but that is not required in this application.

Problem 2.- A selective voltmeter should read the voltage in a range of frequencies from 200kHz to 240kHz.

- a) Design a band pass filter with those two cutoff frequencies and drop of 20dB per decade on each side of the band.
- b) Calculate the gain in the middle of the band at 220kHz.

Solution: A simple low pass RC filter connected through a voltage follower with another Rc filter can do what we need. The low pass filter is set to 240kHz and the high pass to 200kHz.

For example using these values


$$R_1 = 660\Omega$$
$$R_2 = 790\Omega$$
$$C_1 = 1nF$$
$$C_2 = 1nF$$

The gain at 220kHz is

$$\frac{v_o}{v_i} = \frac{1}{\sqrt{1 + \left(\frac{220kHz}{240kHz}\right)^2}} \frac{1}{\sqrt{1 + \left(\frac{200kHz}{220kHz}\right)^2}} = 0.545$$

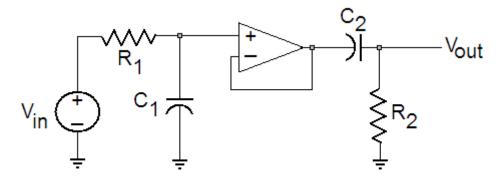
This is a drop of 5 dB.

Problem 3.- In the following band-pass filter you want the low cut-off frequency to be 2kHz and the upper cut-off to be 15kHz.

- (a) Find reasonable values of R_1 , C_1 , R_2 and C_2 to get the desired response.
- (b) What is the gain for a frequency of 20 kHz?

Solution:

The combination R_1 and C_1 behaves as a low pass filter, so we want:


$$15kHz = \frac{1}{2\pi R_1 C_1} \rightarrow R_1 = \frac{1}{2\pi C_1 (15kHz)}$$
, for example 22nF and 480 Ω

The combination R₂ and C₂ behaves as a high pass filter, and here we want:

$$2kHz = \frac{1}{2\pi R_1 C_1} \rightarrow R_1 = \frac{1}{2\pi C_1 (2kHz)}, \text{ for example } 22\text{nF and } 3.6\text{k}\Omega$$

The gain for a frequency of 20 kHz is 0.6 or .4.4dP

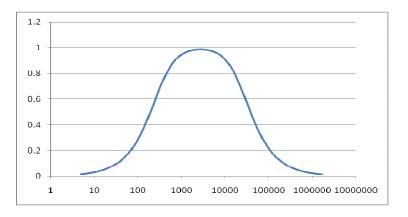
The gain for a frequency of 20 kHz is 0.6 or -4.4dB

Problem 4.- In the following band-pass filter the values of the resistors and capacitors are as follows: $C_1 = 22nF$ $R_1 = 330\Omega$ $C_2 = 470nF$ $R_2 = 1.0k\Omega$

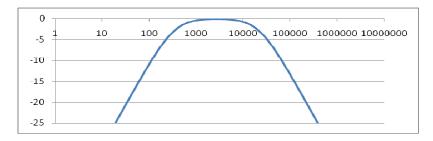
- (a) Find the high and low cut-off frequencies.
- (b) Graph the gain as a function of frequency.
- (c) What is the gain for a frequency of 300Hz?

Solution: The circuit on the left of the opamp will behave as a low pass filter with a cutoff frequency of:

$$f_2 = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi (330\Omega)(22nF)} = 21,900 \text{ Hz}$$


On the other hand, the circuit on the right of the opamp will behave as a high pass filter with a cutoff frequency of:

$$f_1 = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi (1k\Omega)(470nF)} = 340 \text{ Hz}$$


The overall gain will be:

A =
$$\left[\frac{1}{\sqrt{1 + (f/21,900)^2}}\right] \left[\frac{1}{\sqrt{1 + (340/f)^2}}\right]$$

Whose graph looks as follows:

In decibels the graph will be:

At 300 Hz the gain is 0.66 or -3.6dB