Electronics

Special filters

Problem 1.-The circuit uses only one opamp, but with three resistors and two capacitors as shown in the schematic behaves as a special filter. Calculate its gain.

Solution: We can define $X=\frac{1}{\omega C}=\frac{1}{2 \pi f C}$ as the impedance of the capacitor and then the circuit using complex numbers to model the circuit:

Notice that the two capacitors and the resistance R form a delta configuration, which we can transform into a star as shown below.

The values of the impedances A, B and C are given by the usual transformations:

$$
A=\frac{(-j X)(-j X)}{-j X-j X+R} \quad B=\frac{(R)(-j X)}{-j X-j X+R} \quad C=\frac{(R)(-j X)}{-j X-j X+R}
$$

Notice that impedance C is irrelevant because the current entering the opamp is negligible. Notice also that the signal source and resistors R_{1} and R_{2} can be replaced by a Thevenin equivalent, so the circuit becomes:

You can recognize that this circuit behaves as an inverting amplifier with gain:

$$
G=\frac{-B}{A+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{-\frac{(R)(-j X)}{-j X-j X+R}}{\frac{(-j X)(-j X)}{-j X-j X+R}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{1}{-\frac{2 R_{1} R_{2}}{R\left(R_{1}+R_{2}\right)}+j\left(\frac{X}{R}-\frac{R_{1} R_{2}}{X\left(R_{1}+R_{2}\right)}\right)}
$$

Its absolute value is: $|G|=\frac{1}{\sqrt{\left(\frac{2 R_{1} R_{2}}{R\left(R_{1}+R_{2}\right)}\right)^{2}+\left(\frac{X}{R}-\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right) X}\right)^{2}}}$

And including the factor $\frac{R_{2}}{R_{1}+R_{2}}$ from the Thevenin transformation, we get:

$$
|G|=\frac{1}{\sqrt{\left(\frac{2 R_{1}}{R}\right)^{2}+\left(X \frac{\left(R_{1}+R_{2}\right)}{R_{2} R}-\frac{R_{1}}{X}\right)^{2}}}
$$

The maximum value of the gain happens when the second term under the square root is zero:

$$
\frac{X}{R}-\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right) X}=0 \rightarrow X_{M A X}=\sqrt{\frac{R R_{1} R_{2}}{R_{1}+R_{2}}} \rightarrow f_{M A X}=\frac{1}{2 \pi C} \sqrt{\frac{R_{1}+R_{2}}{R R_{1} R_{2}}}
$$

At that point it will be: $G_{M A X}=\frac{R}{2 R_{1}}$

The gain can also be written as:

$$
G=\frac{R}{2 R_{1}} \frac{1}{\sqrt{1+\left(\frac{R}{2 X_{M A X}}\right)^{2}\left(\frac{f_{M A X}}{f}-\frac{f}{f_{M A X}}\right)^{2}}}
$$

Problem 2.- Choose components for the following circuit to filter a signal in such a way that it has a peak gain of 0 dB at 4.4 kHz

Solution: You can demonstrate (see problem above) that the gain is

$$
|G|=\frac{R}{2 R_{1}} \frac{1}{\sqrt{1+\left(\frac{R\left(R_{1}+R_{2}\right)}{4 R_{1} R_{2}}\right)\left(\frac{f_{M A X}}{f}-\frac{f}{f_{M A X}}\right)^{2}}}
$$

Where the maximum value is: $G_{M A X}=\frac{R}{2 R_{1}}$
At a frequency $f_{M A X}=\frac{1}{2 \pi C} \sqrt{\frac{R_{1}+R_{2}}{R R_{1} R_{2}}}$

To have a peak of 0 dB we need $R=2 R_{1}$, for example $\mathrm{R}=2 \mathrm{k} \Omega$ and $\mathrm{R}_{1}=1 \mathrm{k} \Omega$.
For that to happen at 4.4 kHz , we need
$4400 \mathrm{~Hz}=\frac{1}{2 \pi C} \sqrt{\frac{1 k \Omega+R_{2}}{2 k \Omega \times 1 k \Omega \times R_{2}}}$
For example $\mathrm{R}_{2}=1 \mathrm{k} \Omega$ and $\mathrm{C}=36.2 \mathrm{nF}$

Problem 3.- In the following filter calculate the gain as a function of frequency.

Solution: The circuit, with the capacitors replaced by complex impedances, looks like this:

To simplify the circuit, we replace the star connection made by the two resistors and Z_{1} for a delta connection as follows:

The value of Z_{a} is given by:
$\mathrm{Z}_{\mathrm{a}}=\mathrm{R}+\mathrm{R}+\frac{R^{2}}{-\frac{j}{2 \mathrm{C} \omega}}=2 \mathrm{R}+2 \mathrm{R}^{2} \mathrm{Cj} \omega$
We can ignore Z_{b} since it is connected between the source and the opamp output and we can also ignore Z_{c} because no current will flow through it. Then the filter behaves like a voltage divider, so the gain is:
$\mathrm{G}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {in }}}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{2}+\mathrm{Z}_{\mathrm{a}}}=\frac{-\frac{j}{\mathrm{C} \omega}}{2 \mathrm{R}+2 \mathrm{R}^{2} \mathrm{Cj} \omega-\frac{j}{C \omega}}$
The absolute value of the gain is:
$|G|=\frac{\frac{1}{C \omega}}{\sqrt{4 R^{2}+\left(2 R^{2} C \omega-\frac{1}{C} \omega\right)^{2}}}$
This can be simplified to give:

$$
|\mathrm{G}|=\frac{1}{\sqrt{1+4 \mathrm{R}^{4} \mathrm{C}^{4} \omega^{4}}}
$$

We can define the cutoff frequency with the equation:

$$
\omega_{o}=\frac{1}{\sqrt{2} R C} \rightarrow f_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{2} R C}
$$

And the gain can be then written as $|\mathrm{G}|=\frac{1}{\sqrt{1+\left(\frac{f}{f_{\circ}}\right)^{4}}}$
Here, after the cutoff frequency the drop in gain is 40 dB per decade, which is twice what you get with a simple RC filter.

Problem 4.- The following low-pass filter is a compact design with two poles that in its mid band has a gain $A=1+\frac{R_{F}}{R_{G}}$
And cut-off frequency $f_{C}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}$

Its Bode diagram can be modeled as two straight lines that intersect at the cut-off frequency, however its precise form depends on the specific component values.
You are asked to find the precise curve close to the cut-off frequency.
Solution: Replacing the capacitors by complex impedances
$Z_{1}=-\frac{j}{\omega C_{1}}$ and $Z_{2}=-\frac{j}{\omega C_{2}}$

The star circuit formed by $\mathrm{R}_{1}, \mathrm{R}_{2}$ and Z_{1} can be converted into a delta

With the values
$Z_{A}=R_{1}+R_{2}+j R_{1} R_{2} \omega C_{1}$
$Z_{B}=Z_{1}+R_{2}+\frac{Z_{1} R_{2}}{R_{1}}=R_{2}-\frac{j}{\omega C_{1}}\left(1+\frac{R_{2}}{R_{1}}\right)$
$Z_{C}=Z_{1}+R_{1}+\frac{Z_{1} R_{1}}{R_{2}}=R_{1}-\frac{j}{\omega C_{1}}\left(1+\frac{R_{1}}{R_{2}}\right)$
We notice that Z_{C} does not participate in the calculations. The branch formed by R_{G} and R_{F} behaves as a voltage divider with its voltage going to the opamp's inverting input.
$V_{-}=V_{o} \frac{R_{G}}{R_{G}+R_{F}}$
We can find V_{i} as a function of V_{o} and then invert the equation to find the gain. With this plan, consider:

Current through Z_{2}

$$
I_{Z 2}=V_{o} \frac{R_{G}}{Z_{2}\left(R_{G}+R_{F}\right)}
$$

Current through Z_{B}

$$
I_{Z B}=-V_{o} \frac{R_{F}}{Z_{B}\left(R_{G}+R_{F}\right)}
$$

Current through Z_{A}

$$
I_{Z A}=V_{o} \frac{R_{G}}{Z_{2}\left(R_{G}+R_{F}\right)}-V_{o} \frac{R_{F}}{Z_{B}\left(R_{G}+R_{F}\right)}
$$

Voltage V_{i}

$$
V_{i}=V_{o} \frac{R_{G}}{R_{G}+R_{F}}+V_{o} \frac{R_{G} Z_{A}}{Z_{2}\left(R_{G}+R_{F}\right)}-V_{o} \frac{R_{F} Z_{A}}{Z_{B}\left(R_{G}+R_{F}\right)}
$$

Inverting the equation
$\frac{V_{o}}{V_{i}}=\frac{1}{\frac{R_{G}}{R_{G}+R_{F}}+\frac{R_{G} Z_{A}}{Z_{2}\left(R_{G}+R_{F}\right)}-\frac{R_{F} Z_{A}}{Z_{B}\left(R_{G}+R_{F}\right)}}$

Simplifying

$\frac{V_{o}}{V_{i}}=\frac{R_{G}+R_{F}}{R_{G}+\frac{R_{G} Z_{A}}{Z_{2}}-\frac{R_{F} Z_{A}}{Z_{B}}}$
Next, you can put this equation in your favorite numerical program and graph the gain close to the cut-off frequency, like in this example:

