## Electronics Lab

## Filter analysis

Active narrow band-pass filter.
The circuit uses only one opamp, but there are three resistors and two capacitors as shown in the schematic:


We can define $X=\frac{1}{\omega C}=\frac{1}{2 \pi f C}$ as the impedance of the capacitor and then the circuit using complex impedances will look as follows:


Now, notice that the two capacitors and the resistance " $R$ " form a delta configuration, which we can transform into a star as follows:


The values of the impedances A, B and C are given by the usual transformations:

$$
A=\frac{(-i X)(-i X)}{-i X-i X+R} \quad B=\frac{(R)(-i X)}{-i X-i X+R} \quad C=\frac{(R)(-i X)}{-i X-i X+R}
$$

But notice that the impedance C is irrelevant because the current entering the opamp is negligible, so it won't play a role. Another point: Notice that the signal and the two resistors $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ can be replaced by a Thevenin equivalent, so the circuit becomes:


You can tell that this circuit behaves as an inverting amplifier with gain:
$\operatorname{Gain}_{I N V . A M P}=\frac{-B}{A+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{-\frac{(R)(-i X)}{-i X-i X+R}}{\frac{(-i X)(-i X)}{-i X-i X+R}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{1}{-\frac{2 R_{1} R_{2}}{R\left(R_{1}+R_{2}\right)}+i\left(\frac{X}{R}-\frac{R_{1} R_{2}}{X\left(R_{1}+R_{2}\right)}\right)}$

The absolute value of the gain is: $\left|\operatorname{Gain}_{\text {INV.AMP }}\right|=\frac{1}{\sqrt{\left(\frac{2 R_{1} R_{2}}{R\left(R_{1}+R_{2}\right)}\right)^{2}+\left(\frac{X}{R}-\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right) X}\right)^{2}}}$
The overall gain will need to consider the Thevenin voltage, so it has a factor of $\frac{R_{2}}{R_{1}+R_{2}}$, giving:
$\mid$ Gain $\left\lvert\,=\frac{1}{\sqrt{\left(\frac{2 R_{1}}{R}\right)^{2}+\left(X \frac{\left(R_{1}+R_{2}\right)}{R_{2} R}-\frac{R_{1}}{X}\right)^{2}}}\right.$
The maximum value of the gain happens when the second term under the square root is zero:

$$
\frac{X}{R}-\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right) X}=0 \rightarrow X_{M A X}=\sqrt{\frac{R R_{1} R_{2}}{R_{1}+R_{2}}} \rightarrow f_{M A X}=\frac{1}{2 \pi C} \sqrt{\frac{R_{1}+R_{2}}{R R_{1} R_{2}}}
$$

At that point the gain will be: Gain $_{M A X}=\frac{R}{2 R_{1}}$
And we can write the gain also as:

$$
\mid \text { Gain } \left\lvert\,=\frac{1}{\sqrt{\left(\frac{2 R_{1}}{R}\right)^{2}+\left(\frac{R_{1}}{X_{M A X}}\right)^{2}\left(\frac{f_{M A X}}{f}-\frac{f}{f_{M A X}}\right)^{2}}}\right.
$$

