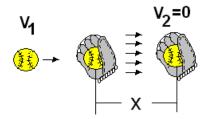
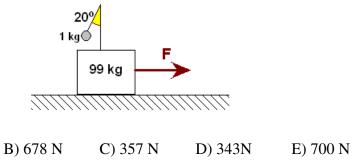
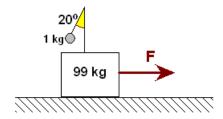
Física I

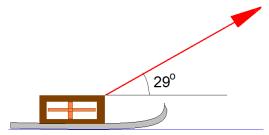

Fuerza

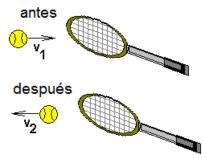
Segunda ley de Newton $\sum F_x = ma_x$ $\sum F_y = ma_y$ Ecuaciones para aceleración constante


A) 335 N

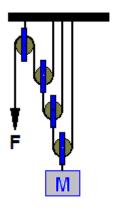
Ecuaciones para aceleración constante
$$x = v_1 t + \frac{1}{2} a t^2 \qquad v_2 = v_1 + a t \qquad v_2^2 = v_1^2 + 2a x \qquad \langle v \rangle = \frac{v_1 + v_2}{2}$$

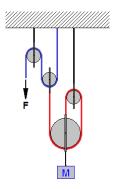

Problema 1.- Una pelota de béisbol (con masa 0.141 kg) viaja a una velocidad $v_1 = 32.5 \text{m/s}$ cuando golpea el guante del receptor, el cual lleva la bola al reposo retrocediendo x = 0.155 m. Calcular la fuerza promedio que actúa sobre el guante.


Problema 2.- Una caja de 99kg es jalada por una fuerza F. Un péndulo de 1kg montado sobre la caja cuelga a un ángulo $\theta = 20^\circ$ de la vertical. Calcular la fuerza F si el coeficiente de fricción entre la caja y el piso es $\mu_k = 0.35$


Problema 2a.- Una caja de 99kg es jalada por una fuerza F. Un péndulo de 1kg montado sobre la caja cuelga a un ángulo $\theta = 20^{\circ}$ de la vertical. Calcular la fuerza F si la fricción es despreciable.

Problema 3.- Una persona jala un trineo de 60 kg sobre una superficie de hielo con una fuerza de 80.0 N a un ángulo de 29° sobre la horizontal. Calcular la aceleración. Ignorar la fricción en este problema.


Problema 4.- En un juego de tenis una pelota que tenía una velocidad inicial v_1 =26m/s horizontal es devuelta horizontalmente también con una rapidez v_2 =24m/s. Calcular la fuerza promedio sobre la pelota cuya masa es 0.057 kg si el contacto con la raqueta es de 5 milisegundos.


Problema 5.- Un objeto de 0.22 kg sigue una trayectoria dada por $\vec{r} = (3 \sin 2t, 4 \cos 2t)$.

Calcular la fuerza neta que actúa sobre el objeto.

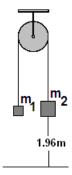
Problema 6.- ¿Qué fuerza F se debe aplicar para elevar el bloque M mostrado en la figura? En una primera aproximación despreciar el peso de las poleas y la fricción.

Problema 6a.- Calcular la fuerza "F" mínima necesaria para levantar la masa M de 120kg. Se puede asumir que las poleas son ideales.

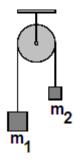
Problema 7.- Una bala de masa 2 g es disparada horizontalmente a una bolsa de arena, golpea la bolsa a una velocidad inicial de 600 m/s. Penetra en la bolsa 20 cm hasta detenerse. ¿Cuál es la fuerza promedio que actúa sobre la bala?

Problema 8.- Si la posición de una partícula de 1.5kg es descrita por el vector:

$$\vec{r} = (t^2, 5\cos t)$$

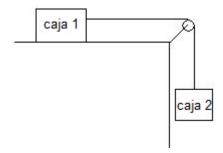

Encontrar la fuerza neta que actúa sobre la partícula como función del tiempo.

Problema 8a.- Si la posición de una partícula de 2.5 kg es descrita por el vector:


$$\vec{r} = (4t^4, 5\cos 2t)$$

Encontrar la fuerza neta actuando sobre la partícula en t=1.57s

Problema 9.- En la máquina de Atwood mostrada en la figura m_2 =3 kg, m_1 =2.5 kg y se puede ignorar la masa de la polea y la fricción. Encontrar la rapidez de m_2 en el instante en que golpea el piso si las, masas se soltaron del reposo.


Problema 9a.- Ud. Desea estudiar aceleración, pero los instrumentos rudimentarios que tiene solo permiten medir aceleraciones de 1m/s² o menos, así que Ud. construye una máquina de Atwood para obtener menos que eso. ¿Qué masa elegiría para logarlo?

Problema 10.- Ignorando la fricción en la siguiente situación, calcular cuánto demorará la caja 1 en deslizarse 1.5m si empieza del reposo.

Masa de la caja 1 = 1.1 kg

Masa de la caja 2 = 2.2 kg

Problema 11.- Los frenos de un carro de 800kg aplican una fuerza de -4,000N. Calcular la distancia necesaria para detener el carro si este va a 35 millas por hora. [1 milla=1609 m]

Problema 12.- En un experimento con una tabla de fuerzas Ud. determina la información siguiente sobre tres fuerzas:

 F_{1} = 5N dirección = 30° F_{2} = 8N dirección = 120° F_{3} = 10N dirección = 150°

Calcular la suma de los tres vectores. Dar la respuesta como magnitud y ángulo.

Problema 13.- Un portaviones tiene una pista de despegue muy corta de solo 85m de largo. ¿Cuánta fuerza se necesitará aplicar a un avión de 12,000 kg para que alcance su velocidad final de despegue de 55m/s empezando desde el reposo?