
Thermal Physics 

Thermodynamic Cycles 
 

Problem 1.- A sports car has an engine with the following specs: 

 

 6,496 cc 6.5 liters V-12 engine with 88 mm bore, 89 mm stroke, 11 compression ratio, double 

overhead cam, variable valve timing/camshaft and four valves per cylinder. 

Premium unleaded fuel 91 grade. 

Multi-point injection fuel system, 26.4 gallon, main premium unleaded fuel tank. 

Power: 477 kW, 640 HP SAE @ 8,000 rpm; 660 ft lb, 895 Nm @ 6,000 rpm 

 

Calculate the thermal efficiency of this car and the minimum amount of heat generated per 

second to deliver its peak power of 640 HP. 

 

Solution: 

 

We can calculate the efficiency of the engine: 
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This allows us to find the heat necessary per second: 
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Problem 2.- A modern diesel engine delivers up to 350 HP, up to 860 lb-ft torque and displaces 

7.2L. It has a compression ratio of 18:1. Estimate the maximum temperature reached by the 

mixture after ignition if the cutoff ratio is 1.95 

 

[For this estimation assume that air behaves like an ideal gas with gamma = 1.4] 

 

Solution: The adiabatic compression ends with air at a temperature T2 that we can calculate from 

the adiabatic equation: 
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After burning the fuel, the mixture reaches a temperature T3 that we can calculate from the ideal 

gas law. Taking into account that it is a constant pressure process: 
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Problem 3.- The diagram below is an approximation to a Sargent cycle run on an ideal gas. A 

constant pressure path (4-1) and a constant volume path (2-3) are connected by two adiabatic 

paths (1-2 and 3-4). Assume that the heat capacities, CP and CV are known. 

Find the thermal efficiency of the cycle. 



 

  
 

Solution: The heat is delivered to the gas in the process 2-3 which is at constant volume, so: 

 

23 V 3 2Q =C (T -T )  

 

The heat dump occurs in the process 4-1 and is at constant pressure, so: 

 

41 P 4 1Q =C (T -T )  

 

With this choice of sign, the heat is positive and the work is given by: 4123 QQW −=  so the 

efficiency is: 
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Problem 4.- What would be the compression ratio of an Otto engine whose thermal efficiency is 

the same as a diesel engine that has a compression ratio of 19:1 and a cutoff ratio of 2.1 

[For this problem assume that air behaves like an ideal gas with gamma=1.4] 

 

Solution: The efficiency of the Diesel engine is: 

 

=








−

−








−=











−

−

γ
−=η

γ

−γ 11.2

11.2

19

1

4.1

1
1

1r

1r

r

11
1

4.1

4.0

c

c

1

v

0.6349 

 

To have the same efficiency with an Otto cycle: 
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Problem 5.-  Calculate the efficiency of an Otto cycle that takes air at 273K and 0.9 atm and has 

a compression ratio of 9 to 1. 

For calculation purposes, take the initial volume as 5.5 liters. 

Draw the cycle and calculate the intermediate values. 



Solution: We could directly use a formula to find the efficiency without calculating intermediate 

values, but this exercise is proposed to gain insight in how the Otto cycle works, so we will 

calculate intermediate points. 

 

The number of moles in the cycle is given by  
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Consider the compression stroke: Here air will be compressed adiabatically from an initial 

volume of 5.5 liters to a final volume of 5.5/9 liters. This adiabatic process is shown in the figure 

as the black curve from 1 to 2.  

 

During this compression the pressure will increase from 0.9atm=0.9×1.03×105 pascals following 

the equation 
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We can also calculate the final temperature 

( ) K
V

V
TTVTTV 6579273

14.1

1

2

1
12

1

22

1

1 ==







=→=

−

−

−−

γ

γγ
 

 

The next step is the explosion of the mixture air and gasoline, which happens at constant volume. 

Since we have the final temperature (1,100K), we can calculate the heat delivered by burning the 

fuel: 
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This increase in temperature will also increase the pressure to a value given by 
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The next process in the cycle is the second adiabatic process, but this is an expansion, where the 

hot gas will produce work. The blue curve from 3 to 4 in the figure represents this process. 

 

The final temperature can be calculated from the relation 
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Finally, the cycle will go back to the initial condition while emitting heat as follows 
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The efficiency is 
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