Thermal Physics

Thermodynamic Processes

Problem 1.- Calculate the work delivered by the isothermal expansion of 5 kg of air at $\mathrm{T}=600 \mathrm{~K}$ from an initial pressure of $\mathrm{p}_{\mathrm{i}}=8 \mathrm{~atm}$ to a final pressure of $\mathrm{p}_{\mathrm{f}}=2 \mathrm{~atm}$.

Solution: The number of moles can be approximated by:
$\mathrm{n}=\frac{5000 \mathrm{~g}}{29 \mathrm{~g} / \mathrm{mole}}=172.4 \mathrm{moles}$
The ratio of volumes (final volume/initial volume) is exactly the inverse of the ratio of pressures (initial pressure/final pressure) because this is an isothermal process, so:
$\mathrm{W}=\int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} \mathrm{pdV}=\mathrm{nRT} \ln \frac{\mathrm{V}_{\text {final }}}{\mathrm{V}_{\text {initial }}}=(8.314 \mathrm{~J} / \mathrm{K})(600 \mathrm{~K}) \ln (4)=\mathbf{1 . 1 8} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{J}$

Problem 2.- Calculate the work done by an ideal gas expanding adiabatically from the state $\left(\mathrm{V}_{\mathrm{i}}\right.$, $\left.\mathrm{P}_{\mathrm{i}}\right)$ to the final state $\left(\mathrm{V}_{\mathrm{f}}, \mathrm{P}_{\mathrm{f}}\right)$. Assume the value of gamma is known.

Solution: In an adiabatic process $\mathrm{pV}^{\gamma}=\mathrm{p}_{\text {final }} \mathrm{V}_{\text {final }}^{\gamma} \rightarrow \mathrm{p}=\frac{\mathrm{p}_{\text {final }} \mathrm{V}_{\text {final }}^{\gamma}}{\mathrm{V}^{\gamma}}$, so the work done is:

$$
\begin{aligned}
& \mathrm{W}=\int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} p d V=\int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} \frac{\mathrm{p}_{\text {final }} V_{\text {final }}^{\gamma} \mathrm{VV}}{\mathrm{~V}^{\gamma}}=\mathrm{p}_{\text {final }} \mathrm{V}_{\text {final }}^{\gamma} \int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} \frac{\mathrm{dV}}{\mathrm{~V}^{\gamma}}=\mathrm{p}_{\text {final }} \mathrm{V}_{\text {final }}^{\gamma} \frac{\left(\mathrm{V}_{\text {final }}^{1-\gamma}-\mathrm{V}_{\text {initial }}^{1-\gamma}\right)}{1-\gamma} \\
& \mathrm{W}=\frac{\mathrm{p}_{\text {final }} \mathrm{V}_{\text {final }}-\mathrm{p}_{\text {initial }} V_{\text {ininitial }}}{1-\gamma}
\end{aligned}
$$

Problem 3.- Calculate the final temperature of a sample of air that is compressed adiabatically from initially STP conditions to a final pressure of 10.5 atm.

Solution: STP conditions means:
$P_{1}=1.013 \times 10^{5} \mathrm{~Pa} \quad \mathrm{~T}_{1}=273.15 \mathrm{~K}$

Since the process is adiabatic $P_{1} V_{1}{ }^{\gamma}=P_{2} V_{2}{ }^{\gamma}$ and since air can be considered an ideal gas (approximately): $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
To eliminate the volume in these equations we can raise the second equation to gamma and divide one equation by the other:

$$
\frac{\mathrm{P}_{1}^{\gamma} \mathrm{V}_{1}^{\gamma}}{\mathrm{T}_{1}^{\gamma}}=\frac{\mathrm{P}_{2}{ }^{\gamma} \mathrm{V}_{2}{ }^{\gamma}}{\mathrm{T}_{2}{ }^{\gamma}} \rightarrow \frac{\mathrm{P}_{1}^{\gamma} \mathrm{V}_{1}{ }^{\gamma}}{\mathrm{T}_{1}{ }^{\gamma} \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}}=\frac{\mathrm{P}_{2}{ }^{\gamma} \mathrm{V}_{2}{ }^{\gamma}}{\mathrm{T}_{2}{ }^{\gamma} \mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}} \rightarrow \frac{\mathrm{P}_{1}^{\gamma}}{\mathrm{T}_{1}{ }^{\gamma} \mathrm{P}_{1}}=\frac{\mathrm{P}_{2}{ }^{\gamma}}{\mathrm{T}_{2}{ }^{\gamma} \mathrm{P}_{2}} \rightarrow \mathrm{~T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}
$$

In our problem:

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=273.15 \mathrm{~K}\left(\frac{10.5 \mathrm{~atm}}{1 \mathrm{~atm}}\right)^{\frac{1.4-1}{1.4}}=534.8 \mathrm{~K}
$$

Problem 4.- Calculate the work delivered by the isentropic expansion of 5 kg of air from an initial condition of $T=600 \mathrm{~K}$ and pressure of $\mathrm{p}_{\mathrm{i}}=8 \mathrm{~atm}$ to a final pressure of $\mathrm{p}_{\mathrm{f}}=2 \mathrm{~atm}$.

Solution: We can calculate the final temperature using the result from the previous problem:
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=600 \mathrm{~K}\left(\frac{2 \mathrm{~atm}}{8 \mathrm{~atm}}\right)^{\frac{1.4-1}{1.4}}=403.8 \mathrm{~K}$
And the work is equal to the change in internal energy in an isentropic process:

$$
\mathrm{W}=-\Delta \mathrm{U}=-\mathrm{C}_{\mathrm{v}}(403.8 \mathrm{~K}-600 \mathrm{~K})
$$

To find the heat capacity notice that $\mathrm{n}=\frac{5000 \mathrm{~g}}{29 \mathrm{~g} / \mathrm{mole}}=172.4$ moles and the heat capacity at constant volume of air is $5 / 2 \mathrm{R}$ per mole, so:

$$
\mathrm{W}=-\Delta \mathrm{U}=-5 / 2(8.314 \mathrm{~J} / \mathrm{K})(172.4)(403.8 \mathrm{~K}-600 \mathrm{~K})=703.1 \mathrm{~kJ}
$$

Problem 5.- An adiabatic process involves a gas that can be approximated as ideal. Which of the following expressions is constant in such a process?
(A) $T V$
(B) $T V^{\gamma}$
(C) $T V^{\gamma-1}$
(D) $T^{\gamma} V$
(E) $T^{\gamma} V^{-1}$

Solution: Since $\mathrm{PV}^{\gamma}=$ constant in an adiabatic process and $\frac{\mathrm{PV}}{\mathrm{T}}=$ constant for an ideal gas we can divide one equation by the other and find

$$
\frac{\mathrm{PV}^{\gamma}}{\frac{\mathrm{PV}}{\mathrm{~T}}}=\text { constant } \rightarrow \mathrm{TV}^{\gamma-1}=\text { constant }
$$

Problem 6.- An ideal gas expands from volume V_{A} and pressure P_{A} to a volume V_{B} and pressure P_{B} in an adiabatic process. Which of the following expressions is the work done in the process?
(A) 0
(B) $n R T \ln \left(\frac{V_{B}}{V_{A}}\right)$
(C) $\frac{P_{A} V_{A}-P_{B} V_{B}}{\gamma-1}$
(D) $P_{A} V_{A}-P_{B} V_{B}$
(E) $P_{A}\left(V_{B}-V_{A}\right)$

Solution: (C)
Problem 7.- An ideal mono atomic gas expands from volume $V_{A}=1 L$ and pressure $P_{A}=1 \mathrm{~atm}$ to a volume $V_{B}=4 L$ in an adiabatic process. Then the gas is heated at constant volume to reach a final pressure $P_{C}=1 \mathrm{~atm}$. Considering the temperatures at points A, B and C , which of the following is true?
(A) $T_{A}=T_{B}=T_{C}$
(B) $T_{A}>T_{B}=T_{C}$
(C) $T_{A}>T_{B}>T_{C}$
(D) $T_{C}>T_{A}>T_{B}$
(E) $T_{C}>T_{A}=T_{B}$

Solution: (D)
Problem 8.- Calculate the work delivered by the adiabatic expansion of 1 kg of air initially at $\mathrm{T}=600 \mathrm{~K}$ from an initial pressure of $\mathrm{p}_{\mathrm{i}}=8 \mathrm{~atm}$ to a final pressure of $\mathrm{p}_{\mathrm{f}}=2 \mathrm{~atm}$. Take air as an ideal gas with $\gamma=1.4$ and molecular mass $M=29$

Solution:

The number of moles is $n=\frac{1000 \mathrm{~g}}{29 \mathrm{~g} / \mathrm{mol}}=34.5$
Then the initial volume is
$V=\frac{n R T}{p}=\frac{34.5 \times 8.314 \times 600}{8 \times 1.013 \times 10^{5}}=0.2122 \mathrm{~m}^{3}$

And the final volume is
$V_{B}=V_{A}\left(\frac{p_{A}}{p_{B}}\right)^{1 / \gamma}=0.2122\left(\frac{8}{2}\right)^{1 / 1.4}=0.5714 \mathrm{~m}^{3}$
The work is
$W=\frac{P_{A} V_{A}-P_{B} V_{B}}{\gamma-1}=\frac{8 \times 1.013 \times 10^{5} \times 0.2122-2 \times 1.013 \times 10^{5} \times 0.5714}{1.4-1}=\mathbf{1 4 0} \mathbf{k J}$

