Thermal Physics

Water and steam

Problem 1.- A rigid tank of volume $1.5 \mathrm{~m}^{3}$ contains saturated steam at 50 kPa . If you cool the water to $\mathrm{T}=60.1^{\circ} \mathrm{C}$ calculate the quality of the new mixture.

Solution: Since the water is in the state of saturated steam, its specific volume will be v_{g}, which we can find in steam tables:

$$
\mathrm{v}=\mathrm{v}_{\mathrm{g}}=3.24 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

When dropping the temperature to $\mathrm{T}=60.1^{\circ} \mathrm{C}$, some of the water will condense giving a quality of less than one. In any case, the specific volume is constant, so at the new conditions:

$$
3.24 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}=\mathrm{v}_{\mathrm{f}}(1-\mathrm{x})+\mathrm{v}_{\mathrm{g}}(\mathrm{x})
$$

We find the values of v_{f} and v_{g} and solve for x :

$$
3.24 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}=0.001017 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}(1-\mathrm{x})+7.649 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}(\mathrm{x}) \rightarrow \mathrm{x}=\mathbf{0 . 4 2}
$$

Problem 2.-One kg of water-vapor mixture initially at a pressure of 400 kPa and a quality of 0.5 is heated at constant pressure. If the final state is superheated steam at $400^{\circ} \mathrm{C}$, calculate the total amount of work done in the expansion.

Solution: Since the process occurs at constant pressure, the amount of work done is:

$$
\mathrm{W}=\int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} \mathrm{pdV}=\mathrm{p}\left(\mathrm{~V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right)
$$

The pressure is already known (400 kPa), so we just need the initial and final volumes:

$$
\begin{aligned}
& \mathrm{v}_{\text {initial }}=\mathrm{v}_{\mathrm{f}}(1-\mathrm{x})+\mathrm{v}_{\mathrm{g}}(\mathrm{x})=0.001084 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}(1-0.5)+0.4625 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}(0.5)=0.2318 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \mathrm{~V}_{\text {initial }}=\mathrm{mv}_{\text {initial }}=(1 \mathrm{~kg}) 0.2318 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}=0.2318 \mathrm{~m}^{3}
\end{aligned}
$$

Also, from the superheated water tables at $400^{\circ} \mathrm{C}$ and 400 kPa :

$$
\mathrm{v}_{\text {final }}=0.7649 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \rightarrow \mathrm{~V}_{\text {final }}=\mathrm{mv}_{\text {final }}=0.7649 \mathrm{~m}^{3}
$$

The work is then:

$$
\mathrm{W}=400 \times 10^{3} \mathrm{~Pa}\left(0.7649 \mathrm{~m}^{3}-0.2318 \mathrm{~m}^{3}\right)=\mathbf{2 1 6} \mathbf{k J}
$$

