Thermal Physics

Boltzmann factors

Problem 1.- A particle can only occupy three possible states with energies $E_1 = E_2 = 0$ and $E_3 = E > 0$

At temperature T, find the probability of finding the particle in state 3.

Solution: The Boltzmann factors are

 $e^{E_1/k_BT} = e^{0/k_BT} = 1$ $e^{E_2/k_BT} = e^{0/k_BT} = 1$ $e^{-E_3/k_BT} = e^{-E/k_BT}$

Therefore, the probability of being in the third state is

$$P = \frac{e^{-E/k_BT}}{2 + e^{-E/k_BT}} = \frac{1}{1 + 2e^{E/k_BT}}$$

Problem 2.- An impurity atom in a crystal can be approximated as a three-dimensional harmonic oscillator in thermal equilibrium with the rest of the crystal at a temperature T. If the unit excitation $\hbar\omega$ is much smaller than k_BT , the average total energy of the oscillator is

(A)
$$\frac{1}{2}k_BT$$

(B) k_BT
(C) $\frac{3}{2}k_BT$
(D) $3k_BT$
(E) $6k_BT$

Solution: (D)

Problem 3.- A thermal system can exist in three states with energies $0, \varepsilon$ and 2ε . If each state has degeneracy 1, what is the partition function?

(A) $e^{-k_BT/\varepsilon}$ (B) $e^{-\varepsilon/k_BT}$ (C) $0 + e^{-\varepsilon/k_BT} + 2e^{-2\varepsilon/k_BT}$ (D) $1 + e^{-\varepsilon/k_BT} + e^{-2\varepsilon/k_BT}$ (E) $e^{-3\varepsilon/k_BT}$

Solution: (D)

Problem 4.- Given a thermal system with states i and energies E_i , which of the following expressions represents the probability of finding the system in one particular state j?

(A)
$$\frac{1}{\sum e^{-E_{i}/k_{B}T}}$$

(B)
$$\sum e^{-E_{i}/k_{B}T}$$

(C)
$$\frac{e^{-E_{j}/k_{B}T}}{\sum e^{-E_{i}/k_{B}T}}$$

(D)
$$e^{-E_{j}/k_{B}T}$$

(E)
$$e^{-E_{j}/k_{B}T} \left(\sum e^{-E_{i}/k_{B}T}\right)$$

Solution: (C)

Problem 5.- A certain atom can exist in a double degenerate ground state with energy 0eV and a quadruple degenerate state with energy 0.009eV. For a temperature corresponding to $k_BT = 0.09$ eV what is the ratio of probabilities of finding the atom in the excited state divided by the ground state?

(A) $4e^{10}$ (B) $2e^{0.1}$ (C) 0.5(D) $2e^{-0.1}$ (E) $2e^{-10}$

Solution: (E)

Problem 6.- A system of is made of N independent particles that have only 3 possible states with energies 0, ε and 2ε . If k_BT is much larger than ε , what is the average energy of the system?

(A) 0 (B) ∞ (C) ε (D) $N\varepsilon$ (E) $2N\varepsilon$

Solution: (D)