Thermal Physics

Discrete Random Variable

Problem 1.- In a certain quantum mechanical system the x component of the angular momentum, L_{x}, is quantized and can take on only the three values $-\hbar, 0$ or \hbar. For a given state of the system it is known that $\left\langle\mathrm{L}_{\mathrm{x}}\right\rangle=1 / 3 \hbar$ and $\left\langle\mathrm{L}_{\mathrm{x}}{ }^{2}\right\rangle=2 / 3 \hbar^{2}$

Find the probability for the x component of the angular momentum, $P\left(L_{x}\right)$. Sketch the result.
Solution: Let us call the probabilities of having the x component of the angular momentum, L_{x}, equal to $-\hbar, 0$ or $\hbar \mathrm{P} 1, \mathrm{P} 2$ and P3.
The sum of these probabilities has to be equal to 1 , so:
$\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3=1$
We also know that:
$\left\langle\mathrm{L}_{\mathrm{x}}\right\rangle=1 / 3 \hbar$ so $\quad-\hbar \mathrm{P} 1+0 \mathrm{P} 2+\hbar \mathrm{P} 3=1 / 3 \hbar$, so $-\mathrm{P} 1+\mathrm{P} 3=1 / 3$
and $\left\langle\mathrm{L}_{\mathrm{x}}{ }^{2}\right\rangle=2 / 3 \hbar^{2}$ so $\hbar^{2} \mathrm{P} 1+0 \mathrm{P} 2+\hbar^{2} \mathrm{P} 3=2 / 3 \hbar^{2}$, so $\mathrm{P} 1+\mathrm{P} 3=2 / 3$
With these three equations, we get:
$\mathrm{P} 1=1 / 6 \quad \mathrm{P} 2=1 / 3 \quad \mathrm{P} 3=1 / 2$
A sketch of the result:

