Thermal Physics

Discrete Random Variable

Problem 1.- In a certain quantum mechanical system the x component of the angular momentum, L_x , is quantized and can take on only the three values $-\hbar$, 0 or \hbar . For a given state of the system it is known that $< L_x > = 1/3 \hbar$ and $< L_x^2 > = 2/3 \hbar^2$

Find the probability for the x component of the angular momentum, $P(L_x)$. Sketch the result.

Solution: Let us call the probabilities of having the x component of the angular momentum, L_x , equal to $-\hbar$, 0 or \hbar P1, P2 and P3.

The sum of these probabilities has to be equal to 1, so:

P1+P2+P3=1

We also know that:

 $< L_x > = 1/3 \hbar$ so $-\hbar P1+0P2+\hbar P3 = 1/3\hbar$, so -P1+P3=1/3

and $< L_x^2 > = 2/3 \hbar^2$ so $\hbar^2 P1 + 0P2 + \hbar^2 P3 = 2/3 \hbar^2$, so P1+P3=2/3

With these three equations, we get:

P1 = 1/6 P2 = 1/3 P3 = 1/2

A sketch of the result:

