Thermal Physics

Helium

Problem 1.- Helium expands adiabatically in a well-insulated container to four times its original volume. It started at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and at a pressure of one atmosphere.
a) What is the final pressure?
b) What is the final temperature?

Solution: Helium is mono-atomic and at the conditions of the problem, it behaves very much like an ideal gas.
a) To get the final pressure, we know that: $\mathrm{P}_{\text {initial }} \mathrm{V}_{\text {initial }}^{\gamma}=\mathrm{P}_{\text {final }} \mathrm{V}_{\text {final }}^{\gamma}$, where $\gamma=5 / 3$, so:

$$
P_{\text {final }}=\frac{P_{\text {initial }} V_{V}^{\gamma} V_{\text {finitial }}^{\gamma}}{V_{\text {final }}}=1 \mathrm{~atm}\left(\frac{1}{4}\right)^{5 / 3}=0.099 \mathrm{~atm}
$$

b) To get the final temperature, recall that $T_{\text {initial }} V_{\text {initial }}^{\gamma-1}=T_{\text {final }} V_{\text {final }}^{\gamma-1}$, so:

$$
\mathrm{T}_{\text {final }}=\frac{\mathrm{T}_{\text {initial }} \mathrm{V}_{\mathrm{initial}}^{\gamma-1}}{\mathrm{~V}_{\text {final }}^{\gamma-1}}=298 \mathrm{~K}\left(\frac{1}{4}\right)^{2 / 3}=\mathbf{1 1 8} \mathrm{K}
$$

