Thermal Physics

Ideal gases

Problem 1.- Calculate the RMS speed of nitrogen molecules N_{2} of mass $\mathrm{m}=28 \mathrm{u}$ in a dilute gas (approximate as an ideal gas) at a temperature $\mathrm{T}=1,500 \mathrm{~K}$.

Solution: The average kinetic energy of a molecule in an ideal gas is $\frac{3}{2} k_{B} T$. This does not take into account rotational or vibrational kinetic energy, only translational. So the average speed (RMS) is found with the equation:

$$
\frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T \rightarrow v=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 1500}{28 \times 1.66 \times 10^{-27}}}=\mathbf{1 , 1 6 0 ~ m} / \mathbf{s}
$$

Problem 2.- What volume would 105.0 g of NO_{2} gas occupy at 31.5 atm and $27.0^{\circ} \mathrm{C}$?
Solution: If NO_{2} behaved like an ideal gas, its volume could be calculated as follows:
Molecular mass $=14 u+2 \times 16 u=46 u$
Number of moles, $\mathrm{n}=\frac{105 \mathrm{~g}}{46 \mathrm{~g} / \text { mole }}=2.28$ moles

Temperature, $\mathrm{T}=273+27=300 \mathrm{~K}$
Pressure, $\mathrm{p}=31.5 \mathrm{~atm}=31.5 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=3.19 \times 10^{6} \mathrm{~Pa}$
So:
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{p}}=\frac{2.28 \mathrm{moles}(8.314 \mathrm{~J} / \mathrm{Kmole})(300 \mathrm{~K})}{3.19 \times 10^{6} \mathrm{~Pa}}=\mathbf{0 . 0 0 1 7 8} \mathbf{m}^{\mathbf{3}}$
However, NO_{2} is not in the gas phase at the conditions given in the problem, so you cannot use the ideal gas equations to calculate its volume.

Problem 3.- Calculate the molecular weight of a gas if its mass is 79.59 g , it is stored in a tank with volume 7.50 L and exerts a pressure of 60.0 atm at a constant temperature of $35.5^{\circ} \mathrm{C}$

Solution: We can calculate the number of moles using the ideal gas law:
$\mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}$

Pressure, $\mathrm{p}=60.0 \mathrm{~atm}=60.0 \mathrm{~atm}\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=6.08 \times 10^{6} \mathrm{~Pa}$
Volume, $\mathrm{V}=7.5 \mathrm{~L}=0.0075 \mathrm{~m}^{3}$
Temperature, $\mathrm{T}=35.5+273.15=308.7 \mathrm{~K}$
So, $n=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{\left(6.08 \times 10^{6} \mathrm{~Pa}\right)\left(0.0075 \mathrm{~m}^{3}\right)}{8.314 \mathrm{~J} / \mathrm{K}(308.7 \mathrm{~K})}=17.76 \mathrm{moles}$
The molecular mass is then: $79.59 \mathrm{~g} / 7.76=4.5 \mathrm{~g} / \mathrm{mol}$
Note: This molecular mass is an average. For example, a mixture of helium and neon could have this average molecular mass.

Problem 4.- Determine the mass of neon (atomic mass $=20.18$) contained in a 5.25 liter tank at 4.80 atm and $26.85^{\circ} \mathrm{C}$.

Solution: The number of moles is given by:

$$
n=\frac{p V}{R T}=\frac{4.8\left(1.013 \times 10^{5} P a\right)\left(0.0052 \mathrm{~m}^{3}\right)}{(8.314 J / K)(300 K)}=1.014 \mathrm{moles}
$$

Since each mole has a mass of 20.18 g , the amount of Ne is $1.014 \times 20.18 \mathrm{~g}=\mathbf{2 0 . 4 6} \mathrm{g}$
Problem 5.- Glycine is an amino acid and does not behave like an ideal gas, but when in the gas phase and very diluted its behavior can be approximated by the $\mathrm{pV}=\mathrm{nRT}$ equation. Calculate the density of glycine in the gas phase at $\mathrm{T}=180^{\circ} \mathrm{C}$ at a pressure of 1.5×10^{-5} torr.
$1 \mathrm{~atm}=760$ torr
Solution: The density:

$$
\frac{N}{V}=\frac{p}{k_{B} T}=\frac{\left(1.5 \times 10^{-5} \text { torr }\right)(1 \mathrm{~atm} / 760 \text { torr })\left(1.013 \times 10^{5} \mathrm{~Pa} / \mathrm{latm}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(180+273) \mathrm{K}}=\mathbf{3 . 2 0 \times 1 0 ^ { 1 7 } / \mathbf { m } ^ { \mathbf { 3 } }}
$$

This is in number of molecules per cubic meter.
Problem 6.- 240 J of heat is added to a monatomic ideal gas under conditions of constant volume, resulting in a temperature rise of 12 K . How much heat will be required to produce the same temperature change, but at constant pressure?

Solution: The heat capacity at constant pressure is $5 / 3$ times the heat capacity at constant volume for a monatomic gas, so the heat necessary will be $5 / 3 \times 240=400 \mathrm{~J}$

