## Thermal Physics

## States of two non-interacting identical spinless particles

Problem 1.- Consider two spinless bosons confined to a cubic box of side L. Calculate the first 5 energy levels of the system and their multiplicities.

Calculate the average kinetic energy if the energy of the ground state is 6 Eo and the temperature is $T=10 \frac{E o}{k_{B}}$

Note 1: Assume the particles are non-interacting.
Note 2: The particles are identical, so be careful not to count multiple times levels that cannot be distinguished.

Solution: For one particle alone, the energy levels correspond to the following quantum numbers:

| State | nx | ny | nz | Energy | g |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | 1 | 1 | 1 | 3Eo | 1 |
| b1 | 1 | 1 | 2 | 6Eo |  |
| b2 | 1 | 2 | 1 | 6Eo | 3 |
| b3 | 2 | 1 | 1 | 6Eo |  |
| c1 | 1 | 2 | 2 | 9Eo |  |
| c2 | 2 | 1 | 2 | 9Eo | 3 |
| c3 | 2 | 2 | 1 | 9Eo |  |
| d1 | 1 | 1 | 3 | 11Eo |  |
| d2 | 1 | 3 | 1 | 11Eo | 3 |
| d3 | 3 | 1 | 1 | 11Eo |  |
| e | 2 | 2 | 2 | 12Eo | 1 |

States of two particles will be combinations of these states, for example:

| aa | ba | ca | da | ea |
| :---: | :---: | :---: | :---: | :---: |
| ab | bb | cb | db | eb |
| ac | bc | cc | dc | ec |
| ad | bd | cd | dd | ed |
| ae | be | ce | de | ee |

Notice, however that states like ab and ba are indistinguishable, so we should count them only once:

| aa | ba | ca | da | ea |
| :---: | :---: | :---: | :---: | :---: |
| ab | bb | cb | db | eb |
| ac | bc | cc | dc | ec |
| ad | bd | cd | dd | ed |
| ae | be | ce | de | ee |

Of the states that are left, the energies are the sum of the one-particle energies, as follows (in terms of $\mathrm{E}_{\mathrm{o}}$ ):

| 6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 12 |  |  |  |
| 12 | 15 | 18 |  |  |
| 14 | 17 | 20 | 22 |  |
| 15 | 18 | 21 | 23 | 24 |

Let us analyze the levels in order of energy:
Lowest energy level: It has an energy of 6Eo and it happens for the unique combination aa, so its degeneracy is 1 .

Second energy level: With an energy of 9Eo, one particle is in state a, while the other is in state b. Since a has multiplicity $=1$ and $b$ has multiplicity $=3$, the combination will have multiplicity 3 (the product of $1 \times 3$ ).

Third energy level: The energy will be 12Eo and there are two ways that we can get this: By combining states $a$ and $c$, which gives three possibilities and combining two identical states $b$. This latter case should be analyzed carefully: There are 9 combinations:

| b1b1 | b2b1 | b3b1 |
| :--- | :--- | :--- |
| b1b2 | b2b2 | b3b2 |
| b1b3 | b2b3 | b3b3 |

But notice that 3 combinations are repeated, so only six are really different:

| b1b1 | b2b1 | b3b1 |
| :--- | :--- | :--- |
| b1b2 | b2b2 | b3b2 |
| b1b3 | b2b3 | b3b3 |

So this third energy level has multiplicity equal to 3 (from the combination ac) +6 (from the combination bb) $=9$.

Fourth energy level: This state has energy of 14 Eo and it is formed by combining states a and d, which gives a multiplicity of $1 \times 3=3$

Fifth energy level: With an energy of 15Eo, this level can be formed by combining states a and e which has a multiplicity of 1 and states $b$ and $c$ with a multiplicity of $3 \times 3=9$, giving a total multiplicity of $1+9=10$.
Notice that the nine combinations of states $b$ and $c$ are different, so we count all of them:

| b1c1 | b2c1 | b3c1 |
| :--- | :--- | :--- |
| b1c2 | b2c2 | b3c2 |
| b1c3 | b2c3 | b3c3 |

Summarizing, for two identical spinless bosons:

| Level | Energy | Multiplicity |
| :---: | :---: | :---: |
| 1 | 6Eo | 1 |
| 2 | 9Eo | 3 |
| 3 | 12Eo | 9 |
| 4 | 14Eo | 3 |
| 5 | 15Eo | 10 |

Now, to calculate the average kinetic energy we only consider these first 5 states in the partition function:

$$
\begin{aligned}
& \langle K . E .\rangle=\frac{6 E_{o}(1) e^{\frac{-6 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}+9 E_{o}(3) e^{\frac{-9 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}+12 E_{o}(9) e^{\frac{-10 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right.}}+14 E_{o}(3) e^{\left.\frac{-12 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right.}\right)}+15 E_{o}(10) e^{\frac{-6 E_{o}}{\frac{-15 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}}}{(1) e^{\frac{-9}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}+(3) e^{\frac{-9 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}+(9) e^{\frac{-10 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}+(3) e^{\frac{-12 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}+(10) e^{\frac{-15 E_{o}}{k_{B}\left(10 \frac{E_{o}}{k_{B}}\right)}}} \\
& \langle K . E .\rangle=E_{o} \frac{6 e^{-0.6}+27 e^{-0.9}+108 e^{-1}+42 e^{-1.2}+150 e^{-1.5}}{1 e^{-0.6}+3 e^{-0.9}+9 e^{-1}+3 e^{-1.2}+10 e^{-1.5}}=12.2 E_{o}
\end{aligned}
$$

The average energy is so high that this approximation does not seem correct in this case. More levels should be taken into account for an accurate calculation.

