Thermal Physics

Nanowire

Problem 1.- Consider a 1-Dimensional ideal gas of electrons as a model for the conduction electrons in a nanowire.
a) Find the Fermi energy of electrons.
b) What is the Fermi velocity of the conduction electrons?
[Use a linear density corresponding to the lattice spacing of sodium of $\mathrm{N} / \mathrm{L}=4.02 \times 10^{9} / \mathrm{m}$ and the mass of the electron $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$]

Solution: An electron confined to a one-dimensional wire will have its momentum quantized as follows:
$\mathrm{p}=\frac{\mathrm{h}}{\lambda}$, but λ can only have values $\frac{2 \mathrm{~L}}{\mathrm{n}}$, where L is the length of the wire and n is a positive integer. The energy in one dimension is quantized also:
$\varepsilon=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}=\frac{(\mathrm{h} / \lambda)^{2}}{2 \mathrm{~m}}=\frac{(\mathrm{nh} / 2 \mathrm{~L})^{2}}{2 \mathrm{~m}}=\mathrm{n}^{2} \frac{\mathrm{~h}^{2}}{8 \mathrm{~mL}^{2}}$
Each energy level can contain two electrons due to spin multiplicity, so:
$\mathrm{n}_{\mathrm{F}}=\frac{\mathrm{N}}{2}$
Then, the Fermi energy is: $\quad \varepsilon_{\mathrm{F}}=\frac{\mathrm{N}^{2} \mathrm{~h}^{2}}{32 \mathrm{~mL}^{2}}$
In case of a density $\mathrm{N} / \mathrm{L}=4.02 \times 10^{9} / \mathrm{m}$ we get:
$\varepsilon_{\mathrm{F}}=\frac{\left(4.02 \times 10^{9} / \mathrm{m}\right)^{2}\left(6.62 \times 10^{-34} \mathrm{Js}\right)^{2}}{32\left(9.1 \times 10^{-31} \mathrm{~kg}\right)}=2.43 \times 10^{-19} \mathrm{~J}=\mathbf{1 . 5 2} \mathbf{e V}$
To get the Fermi velocity, notice that this Fermi energy is the kinetic energy, so:
$\frac{1}{2} \mathrm{mv}_{\mathrm{F}}^{2}=2.43 \times 10^{-19} \mathrm{~J} \rightarrow \mathrm{v}_{\mathrm{F}}=\sqrt{\frac{2\left(2.43 \times 10^{-19} \mathrm{~J}\right)}{\mathrm{m}}}=\sqrt{\frac{2\left(2.43 \times 10^{-19} \mathrm{~J}\right)}{\left(9.1 \times 10^{-31} \mathrm{~kg}\right)}}=7.30 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Problem 1a.- Consider a 1-Dimensional ideal gas of electrons as a model for the conduction electrons in a nanowire.
a) Find the Fermi energy,
b) Fermi velocity,
c) Fermi temperature, and
d) $\mathrm{n}_{\text {Fermi }}$

Use a linear density corresponding to a lattice spacing of $\mathrm{N} / \mathrm{L}=3.5 \times 10^{9} / \mathrm{m}$, the mass of the electron $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{L}=1$ micron

Solution: The number of electrons is 3,500 given the lattice spacing and the length of the wire. This also considers that each atom contributes 1 electron to conduction as in a valence 1 metal.

With this number we can find the $\mathrm{n}_{\mathrm{F}}: n_{F}=1750$, where the factor of 2 is due to spin.

Next the Fermi energy $E_{F}=n_{F}{ }^{2} \frac{h^{2}}{8 m L^{2}}=1.84 \times 10^{-19} J$
To find the velocity we use the kinetic energy equation

$$
E_{F}=\frac{1}{2} m v_{F}^{2} \rightarrow v_{F}=\sqrt{\frac{2 E_{F}}{m}}=6.37 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

Alternatively using De Broglie equation

$$
p=m v_{F}=\frac{h}{\lambda}=\frac{n h}{2 L} \rightarrow v_{F}=\frac{n h}{2 L m}=6.37 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

And using Boltzmann constant we calculate the Fermi temperature
$T_{F}=\frac{E_{F}}{k_{B}}=13,400 \mathrm{~K}$

