Thermal Physics

Heat Capacity of Blackbody Radiation

Problem 1.- For $1 \mathrm{~m}^{3}$ of blackbody radiation at room temperature (300K) find
a) The heat capacity Cv ,
b) The number of atoms of a monatomic gas that would give the same Cv .

Solution:

a) The energy stored in the electromagnetic waves of a cavity at temperature T is given by:
$\mathrm{U}=\frac{\pi^{2} k_{B}{ }^{4}}{15 \hbar^{3} \mathrm{c}^{3}} \mathrm{VT}^{4}$
Therefore, the heat capacity will be:
$\mathrm{C}_{\mathrm{V}}=\frac{\partial \mathrm{U}}{\partial \mathrm{T}}=\frac{4 \pi^{2} k_{B}^{4}}{15 \hbar^{3} \mathrm{c}^{3}} \mathrm{VT}^{3}$
Given the volume of $1 \mathrm{~m}^{3}$ and $\mathrm{T}=300 \mathrm{~K}$ we get:
$\mathrm{C}_{\mathrm{V}}=\frac{4 \pi^{2} \mathrm{k}_{\mathrm{B}}{ }^{4}}{15 \hbar^{3} \mathrm{c}^{3}} \mathrm{VT}^{3}=\frac{4(3.1416)^{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)^{4}}{15\left(1.055 \times 10^{-34} \mathrm{Js}\right)^{3}\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \mathrm{c}^{3}}\left(1 \mathrm{~m}^{3}\right)(300 \mathrm{~K})^{3}$
$\mathrm{C}_{\mathrm{v}}=8.13 \times 10^{-8} \mathrm{~J} / \mathrm{K}$

Recall that the heat capacity of an ideal gas is $\frac{3}{2} \mathrm{Nk}_{\mathrm{B}}$, where N is the number of atoms,
so: $\frac{3}{2} \mathrm{Nk}_{\mathrm{B}}=8.13 \times 10^{-8} \rightarrow \mathrm{~N}=3.93 \times 10^{15}$
At standard temperature and pressure, this gas would occupy a volume of $0.14 \mathrm{~mm}^{3}$.
Problem 2.- The energy from electromagnetic waves in equilibrium in a box is used to melt ice. If the absolute temperature of the box is increased by a factor of three, the mass of ice that can be melted in a fixed amount of time is increased by a factor of
(A) 3
(B) 8
(C) 27
(D) 81
(E) 243

Solution: Since the energy is proportional to the temperature to the $4^{\text {th }}$ power we can melt $3^{4}=\mathbf{8 1}$ times the mass.

Problem 3.- Consider a volume of $1.5 \mathrm{~m}^{3}$ of blackbody radiation at a temperature of 5800 K find the amount of energy in the volume.

Solution: recall the Stefan-Boltzmann constant

$$
\sigma T^{4}=\frac{u c}{4} \rightarrow u=\frac{4 \sigma T^{4}}{c} \text {, where } \mathrm{u} \text { is the energy density. }
$$

Then the energy in $1.5 \mathrm{~m}^{3}$ is
Energy $=\frac{4 \sigma T^{4}}{c}$ Volume $=\frac{4 \times 5.67 \times 10^{-8} \times 5800^{4}}{3 \times 10^{8}} \times 1.5=\mathbf{0 . 8 6} \mathbf{~ J}$
Problem 4.- A star has a surface area A and absolute temperature $T=6,000 K$. You find another star with the same surface area, but it emits 16 times the power of the first one. What is the surface temperature of the second star?
(A) $3,000 \mathrm{~K}$
(B) $6,000 \mathrm{~K}$
(C) $12,000 \mathrm{~K}$
(D) $24,000 \mathrm{~K}$
(E) $96,000 \mathrm{~K}$

Solution: (C)

