Thermal Physics

Fermi Gas in 2D

Problem 1.- Calculate the density of states of electrons $\mathrm{D}(\varepsilon)$ living in a square of area A .
Solution: Analogous to the case of 3-D, the energy is:
$\varepsilon=\mathrm{n}^{2} \frac{\mathrm{~h}^{2}}{8 \mathrm{~mL}^{2}}$,
Equation (1)

Where $\mathrm{n}=\sqrt{\mathrm{n}_{\mathrm{x}}^{2}+\mathrm{n}_{\mathrm{y}}^{2}}$
In n-space, the allowed states are integer pairs ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$) each distinct one able to be occupied by two electrons.

Observe the area in the following figure:

The shaded area is: Area $=\left(\frac{\pi}{2} n\right)$ dn
The number of states in that area is twice that amount (2 per level), so:
Number of states $=\pi n d n$

Recall that the number of states is equal to $\mathrm{D}(\varepsilon) \mathrm{d} \varepsilon$ so:
$\mathrm{D}(\varepsilon) \mathrm{d} \varepsilon=\pi \mathrm{ndn}$
Now we take a differential of the energy (from Equation (1) above):
$\mathrm{d} \varepsilon=\frac{\mathrm{h}^{2}}{8 \mathrm{~mL}^{2}} 2 \mathrm{ndn} \rightarrow \mathrm{dn}=\frac{4 \mathrm{~mL}^{2} \mathrm{~d} \varepsilon}{\mathrm{nh}^{2}}$
And replacing this in Equation (2)
$\mathrm{D}(\varepsilon) \mathrm{d} \varepsilon=\pi \mathrm{n} \frac{4 \mathrm{~mL}^{2} \mathrm{~d} \varepsilon}{\mathrm{nh}^{2}} \rightarrow D(\varepsilon)=4 \pi \frac{\mathrm{~mL}^{2}}{\mathrm{~h}^{2}}$

Problem 2.- Calculate the density of states of electrons $\mathrm{D}(\varepsilon)$ at the Fermi level for a monatomic layer of sodium in the shape of a square of side 15 nm and inter-atomic separation of 0.15 nm

Solution: The number of electrons in the surface is 10,000 since there will be 100 atoms per side (assuming a simple square lattice). Then the Fermi number n_{F} is
$10,000=2 \times \frac{\pi}{4} n_{F}^{2} \rightarrow n_{F}=\sqrt{\frac{2 \times 10,000}{\pi}}=80$
We can also calculate the Fermi energy since
$E=n^{2} \frac{h^{2}}{8 m L^{2}} \rightarrow E_{F}=n_{F}{ }^{2} \frac{h^{2}}{8 m L^{2}}=1.7 \times 10^{-18} J$
For the density of states, consider a differential of n :
$D(\varepsilon) d E=2 \times \frac{\pi}{2} n d n \rightarrow D(\varepsilon)=\pi n \frac{d n}{d E}=\pi n \frac{8 m L^{2}}{2 n h^{2}}=\frac{\pi n_{F}{ }^{2}}{2} \frac{1}{E_{F}}=5.9 \times 10^{21} J^{-1}$
Problem 3.- Calculate the density of states of electrons $D(\varepsilon)$ living in a square of area A at the Fermi level.
Use a linear surface corresponding to a lattice spacing of $\mathrm{N} / \mathrm{L}^{2}=12.25 \times 10^{18} / \mathrm{m}^{2}$, the mass of the electron $9.1 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{L}=1$ micron.

Solution: The number of electrons in the surface is 12.25×10^{6}, given the density and size. Then the Fermi number n_{F} is
$12.25 \times 10^{6}=2 \times \frac{\pi}{4} n_{F}{ }^{2} \rightarrow n_{F}=\sqrt{\frac{2 \times 12.25 \times 10^{6}}{\pi}}=2,793$
We can also calculate the Fermi energy since
$E=n^{2} \frac{h^{2}}{8 m L^{2}} \rightarrow E_{F}=n_{F}{ }^{2} \frac{h^{2}}{8 m L^{2}}=4.69 \times 10^{-19} J$
For the density of states, consider a differential of n :
$D(\varepsilon) d E=2 \times \frac{\pi}{2} n d n \rightarrow D(\varepsilon)=\pi n \frac{d n}{d E}=\pi n \frac{8 m L^{2}}{2 n h^{2}}=\frac{\pi n_{F}{ }^{2}}{2} \frac{1}{E_{F}}=2.61 \times 10^{25} J^{-1}$

