Thermal Physics

H_{2} in 2D

Problem 1.- N molecules of hydrogen H_{2} adsorbed on a flat surface of area A are in thermal equilibrium at temperature T. On the surface, they behave as a non-interacting two-dimensional gas. In particular, the rotational motion is confined to the plane of the surface. The quantum state of the planar rotation is specified by a single quantum number m , which can take on the values 0 , $\pm 1, \pm 2, \pm 3, \pm 4$, etc.

There is one quantum state for each allowed value of m . The energies of the rotational states are $\varepsilon_{\mathrm{m}}=\frac{\hbar^{2}}{2 \mathrm{I}} \mathrm{m}^{2}$ where I is the moment of inertia.
a) Find an expression for the rotational partition function of a single molecule.
b) Find the ratio of the two probabilities $p(m=3) / p(m=2)$

Solution:
a) The partition function is the sum of all the Boltzmann factors:

$$
\mathrm{Z}=\sum_{\mathrm{m}=-\infty}^{\infty} \mathrm{e}^{-\frac{\hbar^{2}}{2 \mathrm{I} \tau} \mathrm{~m}^{2}}
$$

b) The ratio of the two probabilities is equal to the ratio of the Boltzmann factors:
$p(m=3) / p(m=2)=\frac{e^{-\frac{\hbar^{2}}{2 I \tau}(3)^{2}}}{e^{-\frac{\hbar^{2}}{2 I \tau}(2)^{2}}}=e^{-\frac{5 \hbar^{2}}{2 \tau \tau}}$

