
Thermal Physics 

Energy density of electromagnetic waves 

 

Consider a metallic cubic box of side L at temperature T. For standing waves to be stable, the 

electric field will have to be zero at each wall, so the waves are represented by the functions: 
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Where zyx nandnn , are positive integers. The energy in this mode will be: 
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This is the quantization hypothesis proposed by Max Plank to explain black body radiation. 

 

Now, let us apply statistical mechanics (or thermal physics) to the energy in that mode. The 

Boltzmann factors corresponding to the states of mode n are: 
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The sum of the Boltzmann factors is: 
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demonstrate using the telescopic sum, and we know that the sum of the probabilities has to be 1,  

so the probabilities are: 
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The average energy of mode n is calculated by multiplying each state’s energy times the 

probability of that state and adding all the products: 
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This sum can be computed recalling that 
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sum, so:  
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To find the total energy we need to add all the possible energies that correspond to all possible 

values of zyx nandnn ,  
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Notice that we introduce a factor of 2, due to the two possible polarizations of electromagnetic 

waves. Instead of adding the infinite series, we can integrate over one octet of the Cartesian 

coordinate system: 
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We change variables to simplify the integral. Let 
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= , obtaining: 
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The volume of the box is L3, so the density of energy in the box is: 
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The integral has a value of 
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, which you can demonstrate mathematically (see 

appendix), so the energy density is:  
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The numerical factor in the energy density is:  
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Finally, suppose the box has a hole of area A open to the environment. If the velocities of all the 

modes were directed to the outside, in a time t, a volume V=Act (c is the speed of light) would 

move through the hole emitting radiation energy E=Actu, but the velocities are randomly 



distributed, so only one fourth will go through the hole. Then, E=Actu/4, and the energy radiated 

per unit area per unit time will be: 
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The constant 
42

81067.5
Km

watts−×=σ  is called Stefan-Boltzmann constant. 

 

Black body spectrum 

 

In the equation for the energy, we could also introduce the wavelength as the new variable, 
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To get the total intensity of radiation per unit area we divide by the volume and multiply by the 

speed of light divided by 4. 
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Finally, since we are interested in the spectrum, we drop the integral and take only the radiation 

per unit wavelength, obtaining 
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Appendix:   

To calculate the integral 
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Consider the periodic function 
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The function is even, so it will have a Fourier representation as a sum of cosines: 
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The integral is zero if n is even, so for n odd we get: 
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Also, notice that the RMS value of the function f is: 
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Using Parseval’s theorem: 
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Also notice that: 
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We can apply this to the integral after writing it as a series: 
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