Classical Mechanics

Acceleration

Problem 1.- An object with initial velocity v_{o} enters a region where the acceleration is $\mathrm{a}=-\mathrm{kx}^{2}$, calculate how far will it penetrate.

Solution: $\mathrm{a}=-\mathrm{kx}^{2} \rightarrow \frac{d v}{d t}=-\mathrm{kx}^{2} \rightarrow v \frac{d v}{d x}=-\mathrm{kx}^{2} \rightarrow v d v=-\mathrm{kx}^{2} d x$
And integrating we get:
$\int_{v_{o}}^{0} v d v=-\int_{0}^{x} k x^{2} d x \rightarrow \frac{v_{o}{ }^{2}}{2}=\frac{k x^{3}}{3} \rightarrow x=\sqrt[3]{\frac{3 v_{o}{ }^{2}}{2 k}}$

Problem 1a.- An object with initial velocity v_{o} enters a region where the acceleration is $\mathrm{a}=-\mathrm{kx}{ }^{5}$, calculate how far will it penetrate.

Solution:
$a=-k x^{5} \rightarrow \frac{d v}{d t}=-k x^{5} \rightarrow v \frac{d v}{d x}=-k x^{5} \rightarrow v d v=-k x^{5} d x$
And integrating we get:
$\int_{v_{o}}^{0} v d v=-\int_{0}^{x} k x^{5} d x \rightarrow \frac{v_{o}{ }^{2}}{2}=\frac{k x^{6}}{6} \rightarrow x=\sqrt[6]{\frac{3 v_{o}^{2}}{k}}$

Problem 2.- Careful measurements show that an object moving in very thick molasses has an acceleration given by:
$\mathrm{a}=-b v^{4}$
Calculate the velocity as a function of time if the initial velocity is $v(0)=v_{o}$
Solution: By definition: $\mathrm{a}=\frac{d v}{d t}$, so: $\frac{d v}{d t}=-b v^{4}$, separating variables: $-\frac{d v}{v^{4}}=b d t$
Integrating: $\frac{1}{3 v^{3}}=b t+C$

Using the initial condition: $\frac{1}{3 v_{o}{ }^{3}}=C \rightarrow \frac{1}{3 v^{3}}=b t+\frac{1}{3 v_{o}{ }^{3}}$,
Solving for v gives us: $v=\frac{v_{o}}{\sqrt[3]{1+3 v_{o}{ }^{3} b t}}$

Problem 3.- A roller coaster uses magnetic brakes to slow down from an initial velocity of $\mathrm{v}_{1}=14.7 \mathrm{~m} / \mathrm{s}$ to $\mathrm{v}_{2}=0.735 \mathrm{~m} / \mathrm{s}$.

Calculate how long (time) it takes to do this, knowing that the acceleration can be written as:
$\mathrm{a}=-\mathrm{bv}$, where $\mathrm{b}=1.5 \mathrm{~Hz}$

Solution:

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{bv} \rightarrow \frac{\mathrm{dv}}{\mathrm{v}}=-\mathrm{bdt} \rightarrow \ln \left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right)=-\mathrm{bt} \rightarrow \mathrm{t}=\frac{1}{\mathrm{~b}} \ln \left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)=\frac{1}{1.5} \ln \left(\frac{14.7}{0.735}\right)=2 \text { seconds }
$$

Problem 4.- Calculate the tension in string of the "half-Atwood machine" shown in the figure. Assume friction is negligible.

Solution: There is only one force accelerating the whole system: The weight of the 2 kg mass, which is 19.6 N and the acceleration is $a=\frac{F}{m}=\frac{19.6}{6}=3.27 \mathrm{~m} / \mathrm{s}^{2}$
We now can look at the 2 kg mass. There are two forces acting, its weight and the tension in the string so Newton's second law says:

$$
m g-F_{\text {tension }}=m a \rightarrow F_{\text {tension }}=m(g-a)=2(9.8-3.27)=13.1 \mathbf{N}
$$

Problem 5.- A rocket has a mass of $100,000 \mathrm{~kg}$ out of which $95,000 \mathrm{~kg}$ is fuel. The speed of the gases generated by burning the fuel is $1,900 \mathrm{~m} / \mathrm{s}$. Calculate the final speed of the rocket after burning all its fuel starting from zero velocity. Only consider the thrust of the gases, no other forces.

Solution: The thrust is: $\mathrm{F}=-v_{\text {gases }} \frac{d m}{d t}$, and according to Newton's second law:
$\mathrm{F}=m a \rightarrow a=-\frac{v_{\text {gases }}}{m} \frac{d m}{d t}$, which can be written $\quad \frac{\mathrm{dv}}{\mathrm{dt}}=-\frac{v_{\text {gases }}}{m} \frac{d m}{d t} \rightarrow \mathrm{dv}=-v_{\text {gases }} \frac{d m}{m}$
Integrating on both sides of the equation, we get:
$\int_{0}^{v} \mathrm{dv}=-v_{\text {gases }} \int_{100000}^{5,000} \frac{d m}{m}$
That gives: $v=v_{\text {gases }}[\ln (100,000)-\ln (5,000)]=\mathbf{5 , 7 0 0} \mathbf{~ m} / \mathbf{s}$

