Classical Mechanics

Friction

Problem 1.- A crate that has a mass of 99 kg is pushed with a force F . A pendulum mounted on the crate has a mass of 1 kg and hangs at an angle $\theta=20^{\circ}$ off the vertical. Calculate the force F if the coefficient of friction between the crate and the floor is $\mu_{\mathrm{k}}=0.25$

Solution: The angle $\theta=20^{\circ}$ off the vertical indicates that the acceleration of the 1 kg pendulum (and the whole system) is:
$a=g \tan \theta$
Now, the normal force is equal to the total weight of the crate plus pendulum, so:

$$
F_{N}=m g=100 \times 9.8=980 N \rightarrow F_{\text {friction }}=\mu_{K} F_{N}=0.25 \times 980 \mathrm{~N}=245 \mathrm{~N}
$$

Newton's second law:

$$
F-F_{\text {friction }}=m a \rightarrow F=F_{\text {fricion }}+m a=245+100 \times 9.8 \tan 20^{\circ}=600 \mathrm{~N}
$$

Problem 2.- Calculate the force necessary to move the 4 kg -box at constant velocity to the left. Notice that the coefficient of friction between the boxes, as well as between the 4 kg -box and the ground, is $\mu_{\mathrm{k}}=0.25$. Assume the string has negligible mass and ignore friction in the pulley.

Solution: Since there is no acceleration, the only forces necessary will be against friction.

The tension in the string is equal to the friction force on the small mass, so:

$$
F_{\text {Tension }}=F_{\text {friction }}=\mu_{k} F_{\text {normal }}=\mu_{k} m_{1} g
$$

There are 7 forces acting on the 4 kg mass:

In the horizontal direction:

$$
\begin{aligned}
& F=F_{\text {friction } 1}+F_{\text {friction } 2}+F_{\text {Tension }} \\
& F=\mu_{k} m_{1} g+\mu_{k}\left(m_{1}+m_{2}\right) g+\mu_{k} m_{1} g=\mu_{k} g\left(m_{2}+3 m_{1}\right)=0.25 \times 9.8(4+3 \times 2)=\mathbf{2 4 . 5} \mathbf{N}
\end{aligned}
$$

