Classical Mechanics

Newton's Laws

Problem 1.- An experiment reveals that the velocity of a particle follows the equation:
$\mathrm{v}=\frac{\mathrm{A}}{\mathrm{x}^{3}}$, where A is a positive constant.
Calculate the net force acting on the particle as a function of x if its mass is " m ".

Solution:

Since the force is equal to ma, we just need to find the acceleration:
$a=\frac{d v}{d t}=\frac{d v}{d t} \frac{d x}{d x}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}=\frac{\mathrm{A}}{\mathrm{x}^{3}} \frac{d\left(\frac{\mathrm{~A}}{\mathrm{x}^{3}}\right)}{d x}=\frac{\mathrm{A}}{\mathrm{x}^{3}}\left(-\frac{3 \mathrm{~A}}{\mathrm{x}^{4}}\right)=-\frac{3 \mathrm{~A}^{2}}{\mathrm{x}^{7}}$
So the force is: $\quad F=-\frac{3 m^{2}}{\mathrm{x}^{7}}$
Problem 1a.- An experiment reveals that the velocity of a particle of mass " m " follows the equation:
$\mathrm{v}=\frac{\mathrm{A}}{\mathrm{x}^{4}}$, where A is a positive constant.
Calculate the net force acting on the particle as a function of x.
Solution: Since the force is equal to ma, we just need to find the acceleration:
$a=\frac{d v}{d t}=\frac{d\left(\frac{\mathrm{~A}}{\mathrm{x}^{4}}\right)}{d t}$
But notice that we don't have v as a function of time, so we need to use the "chain rule" of calculus:
$a=\frac{d\left(\frac{\mathrm{~A}}{\mathrm{x}^{4}}\right)}{d x}=-\frac{4 \mathrm{~A}}{\mathrm{x}^{5}} \frac{d x}{d t}=-\frac{4 \mathrm{~A}}{\mathrm{x}^{5}} v=-\frac{4 \mathrm{~A}^{2}}{\mathrm{x}^{9}}$
So the force is:
$F=-\frac{4 \mathrm{~mA}^{2}}{\mathrm{x}^{9}}$

Problem 2.- A skydiver jumps from a helicopter with zero initial velocity. In addition to the gravitational force -mg , she experiences an air resistance force equal to -bv , where b is a constant.
a) Find the terminal velocity of the skydiver.
b) Calculate the kinetic energy as a function of time.
c) Calculate the power dissipated on the skydiver as a function of time.

Solution:

a) The skydiver will reach terminal velocity when the net force acting on him is zero:
$-\mathrm{mg}-\mathrm{bv}=0 \rightarrow \mathrm{v}=-\frac{\mathrm{mg}}{\mathrm{b}}$
b) Let's calculate the velocity as a function of time:
$\mathrm{F}=-\mathrm{mg}-\mathrm{bv} \rightarrow \mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{mg}-\mathrm{bv} \rightarrow \frac{\mathrm{dv}}{\mathrm{v}+\mathrm{mg} / \mathrm{b}}=-(\mathrm{b} / \mathrm{m}) \mathrm{dt}$
Integrating we get:
$\ln (v+m g / b)=-(b / m) t+C \rightarrow v=-m g / b+C^{\prime} e^{-b / m}$
Since the initial velocity is zero, $C^{\prime}=m g / b$, so
$\mathrm{v}=\mathrm{mg} / \mathrm{b}\left(\mathrm{e}^{-\mathrm{bt} / \mathrm{m}}-1\right)$
The kinetic energy will then be:
K.E. $=\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{m}^{3} \mathrm{~g}^{2}}{2 b^{2}}\left(\mathrm{e}^{-\mathrm{bt} / \mathrm{m}}-1\right)^{2}$
c) The power will be:

Power $=F v=\frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{b}\left(1-\mathrm{e}^{-\mathrm{bt} / \mathrm{m}}\right) \mathrm{e}^{-\mathrm{bt} / \mathrm{m}}$

Notice that the maximum power happens at $t=\frac{m}{b} \ln (2)$ when the power reaches
Power $_{\text {max }}=\frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{4 b}$
At that point the net force is half the weight and the velocity is half the terminal velocity.

Problem 3.- Careful measurements show that an object moving in very thick molasses has an acceleration given by:
$\mathrm{a}=-b v^{3}$
Calculate the velocity as a function of time if the initial velocity is $v(0)=v_{o}$

Solution: By definition: $\mathrm{a}=\frac{d v}{d t}$, so: $\frac{d v}{d t}=-b v^{3}$, separating variables: $-\frac{d v}{v^{3}}=b d t$
Integrating: $\frac{1}{2 v^{2}}=b t+C$
Using the initial condition: $\frac{1}{2 v_{o}{ }^{2}}=C \rightarrow \frac{1}{2 v^{2}}=b t+\frac{1}{2 v_{o}{ }^{2}}$,
Solving for v gives us: $v=\frac{v_{o}}{\sqrt{1+2 v_{o}{ }^{2} b t}}$
Problem 4.- A roller coaster uses magnetic brakes to slow down from an initial velocity of $\mathrm{v}_{1}=14.7 \mathrm{~m} / \mathrm{s}$ to $\mathrm{v}_{2}=0.735 \mathrm{~m} / \mathrm{s}$.
Calculate how long (time) it takes to do this, knowing that the acceleration can be written as: $a=-b v$, where $b=1.5 \mathrm{~Hz}$

Solution:

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{bv} \rightarrow \frac{\mathrm{dv}}{\mathrm{v}}=-\mathrm{bdt} \rightarrow \ln \left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right)=-\mathrm{bt} \rightarrow \mathrm{t}=\frac{1}{\mathrm{~b}} \ln \left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)=\frac{1}{1.5} \ln \left(\frac{14.7}{0.735}\right)=2 \text { seconds }
$$

Problem 5.- An object is dropped with an initial velocity zero. Half a second later another object is thrown downwards from the same initial point with a speed of $9.8 \mathrm{~m} / \mathrm{s}$. Calculate how long (time) it will take the second object to reach the first.

Solution: The distance covered by the first object is $x=v_{1} t+\frac{1}{2} a t^{2}=4.9 t^{2}$, the second object starts 0.5 seconds later, so the time is only $t-0.5$ and the value of x is:
$x=v_{1} t+\frac{1}{2} a t^{2}=9.8(t-0.5)+4.9(t-0.5)^{2}$,
but both numbers should be equal, so:
$4.9 t^{2}=9.8(t-0.5)+4.9(t-0.5)^{2}$

Solving for t we get: $0=9.8 t-4.9-4.9 t+1.175 \rightarrow t=\frac{4.9-1.175}{4.9}=\mathbf{0 . 7 5} \mathrm{s}$

