
Classical Mechanics 

Projectiles 
 

Problem 1.- A projectile is launched at an angle �36θ =  with an initial speed 10m/sv1 = . 

Calculate how long later the speed will be only 8.5 m/s. 

 

 
 

Solution: The initial velocities are: 

 

== �36cos10V1x 8.09 m/s 

== �36sin10V1y 5.88 m/s 

 

Later, when the speed is 8.5 m/s the horizontal velocity will stay at 8.09 m/s, but the vertical 

velocity will be: 
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Now we can find the time: 
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Problem 1a.- A projectile is launched at an angle �53θ =  with an initial speed 10m/sv1 = . 

Calculate how long later the speed will be only 8 m/s. 

 
 

Solution: The initial velocities are: 

 

== �53cos10V1x 6 m/s  

== �53sin10V1y 8 m/s  

 

Later, when the speed is 8m/s the horizontal velocity will stay at 6 m/s, but the vertical velocity 

will be: 

 



sm /3.568V 22

2y =−=  

 

Now we can find the time: 
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Problem 2.- A rocket is launched straight up with the following characteristics:  

 

Initial mass: kgi

6108.2m ×=   

Final mass: kgf

6107.0m ×=   

Fuel mass: kgmm fi

6

fuel 101.2m ×=−=   

Relative velocity of gasses: sm /600,2vr =   

Thrust: N
6

thrust 1037F ×=   

 

Determine the rate of fuel burning, the total time until the fuel is consumed, the acceleration, 

velocity, and height as a function of time. For these calculations assume that the value of g stays 

constant (9.8m/s2). 

 

Solution: 
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Problem 3.- A projectile is shot up a slope (inclined an angle β) with an initial speed Vo. 

Determine the angle α that will produce the maximum range R. 

 

 
 

Solution: The problem is to find the value of α that gives the maximum range. To do this notice 

that the equations of motion are: 
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We know that the projectile will hit the ground when 
x

y
=βtan , so we can calculate the time of 

flight of the particle: 
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The range can be calculated with the equation: 
βcos

x
R = , so: 
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If we want the best range, the derivative of R with respect to α  should be zero, so: 
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Taking the derivative: 
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This last equation can be simplified as follows: 
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Using the equation: ββ tan)tan( −=− we get: 

 

αβ 2cot)tan( =−  

 

And since )290tan(2cot αα −=  we get: 
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45 / 2oα β= +  

 

For example, for β=20°, the best angle is α = 45° + 20°/2 = 55°, which is highlighted in red in the 

following figure: 

 

 
 

 

 

 

 

 

 

 

 



Interestingly, the solution also works for negative slopes, for example for β = -20°, the best angle 

is α = 45° + (-20°)/2 = 35°, which is highlighted in red in the following figure: 

 

 

 


