Classical Mechanics
 Projectiles

Problem 1.- A projectile is launched at an angle $\theta=36^{\circ}$ with an initial speed $\mathrm{v}_{1}=10 \mathrm{~m} / \mathrm{s}$. Calculate how long later the speed will be only $8.5 \mathrm{~m} / \mathrm{s}$.

Solution: The initial velocities are:
$\mathrm{V}_{1 \mathrm{x}}=10 \cos 36^{\circ}=8.09 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{1 \mathrm{y}}=10 \sin 36^{\circ}=5.88 \mathrm{~m} / \mathrm{s}$
Later, when the speed is $8.5 \mathrm{~m} / \mathrm{s}$ the horizontal velocity will stay at $8.09 \mathrm{~m} / \mathrm{s}$, but the vertical velocity will be:
$\mathrm{V}_{2 \mathrm{y}}=\sqrt{8.5^{2}-8.09^{2}}=2.61 \mathrm{~m} / \mathrm{s}$

Now we can find the time:
$\mathrm{t}=\frac{v_{2 y}-v_{1 y}}{a_{y}}=\frac{2.61-5.88}{-9.8}=\mathbf{0 . 0 3 3} \mathbf{s}$

Problem 1a.- A projectile is launched at an angle $\theta=53^{\circ}$ with an initial speed $\mathrm{v}_{1}=10 \mathrm{~m} / \mathrm{s}$. Calculate how long later the speed will be only $8 \mathrm{~m} / \mathrm{s}$.

Solution: The initial velocities are:
$\mathrm{V}_{1 \mathrm{x}}=10 \cos 53^{\circ}=6 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{1 \mathrm{y}}=10 \sin 53^{\circ}=8 \mathrm{~m} / \mathrm{s}$

Later, when the speed is $8 \mathrm{~m} / \mathrm{s}$ the horizontal velocity will stay at $6 \mathrm{~m} / \mathrm{s}$, but the vertical velocity will be:
$\mathrm{V}_{2 \mathrm{y}}=\sqrt{8^{2}-6^{2}}=5.3 \mathrm{~m} / \mathrm{s}$

Now we can find the time:
$\mathrm{t}=\frac{\nu_{2 y}-v_{1 y}}{a_{y}}=\frac{5.3-8}{-9.8}=\mathbf{0 . 2 8} \mathbf{s}$
Problem 2.- A rocket is launched straight up with the following characteristics:
Initial mass: $\mathrm{m}_{i}=2.8 \times 10^{6} \mathrm{~kg}$
Final mass: $\mathrm{m}_{f}=0.7 \times 10^{6} \mathrm{~kg}$
Fuel mass: $\mathrm{m}_{\text {fuel }}=m_{i}-m_{f}=2.1 \times 10^{6} \mathrm{~kg}$
Relative velocity of gasses: $\mathrm{v}_{\mathrm{r}}=2,600 \mathrm{~m} / \mathrm{s}$
Thrust: $\mathrm{F}_{\text {thrust }}=37 \times 10^{6} \mathrm{~N}$
Determine the rate of fuel burning, the total time until the fuel is consumed, the acceleration, velocity, and height as a function of time. For these calculations assume that the value of g stays constant $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$.

Solution:
Rate of fuel burning: $\frac{\mathrm{dm}}{\mathrm{dt}}=-\frac{\mathrm{F}_{\text {thrust }}}{v_{r}}=-\frac{37 \times 10^{6} \mathrm{~N}}{2,600 \mathrm{~m} / \mathrm{s}}=14,231 \mathrm{~kg} / \mathrm{s}$
Total time: $t=\frac{m_{\text {fuel }}}{\left|\frac{\mathrm{dm}}{\mathrm{dt}}\right|}=\frac{2.1 \times 10^{6} \mathrm{~kg}}{14,231 \mathrm{~kg} / \mathrm{s}}=147.6 \mathrm{~s}$
Acceleration: $a=\frac{\sum F}{m}=\frac{37 \times 10^{6}}{2.8 \times 10^{6}-14,231 t}-9.8$
$v=\int_{0}^{t}\left(\frac{37 \times 10^{6}}{2.8 \times 10^{6}-14,231 t}-9.8\right) d t$
$v=\int_{0}^{t}\left(\frac{2600}{196.7-t}-9.8\right) d t=2600 \ln \left(\frac{196.7}{196.7-t}\right)-9.8 t$
$x=\int_{0}^{t}\left(2600 \ln \left(\frac{196.7}{196.7-t}\right)-9.8 t\right) d t$
$x=-2600 \int_{0}^{t} \ln \left(1-\frac{t}{196.7}\right) d t-4.9 t^{2}$

$$
\begin{aligned}
& x=2600 \times 196.7 \int_{1}^{1-\frac{t}{196.7}} \ln u d u-4.9 t^{2} \\
& x=2600 \times\left. 196.7(u \ln u-u)\right|_{1} ^{1-\frac{t}{196.7}}-4.9 t^{2} \\
& x=2600\left[(196.7-t) \ln \left(1-\frac{t}{196.7}\right)+t\right]-4.9 t^{2}
\end{aligned}
$$

Problem 3.- A projectile is shot up a slope (inclined an angle β) with an initial speed V_{o}. Determine the angle α that will produce the maximum range R.

Solution: The problem is to find the value of α that gives the maximum range. To do this notice that the equations of motion are:

$$
x=V_{o}(\cos \alpha) t \quad \text { and } \quad y=V_{o}(\sin \alpha) t-\frac{1}{2} g t^{2}
$$

We know that the projectile will hit the ground when $\tan \beta=\frac{y}{x}$, so we can calculate the time of flight of the particle:
$\tan \beta=\frac{V_{o}(\sin \alpha) t-\frac{1}{2} g t^{2}}{V_{o}(\cos \alpha) t} \rightarrow t=2 \frac{V_{o} \cos \alpha}{g}(\tan \alpha-\tan \beta)$
The range can be calculated with the equation: $R=\frac{x}{\cos \beta}$, so:

$$
R=\frac{V_{o} \cos \alpha}{\cos \beta} t=\frac{V_{o} \cos \alpha}{\cos \beta} \frac{2 V_{o} \cos \alpha(\tan \alpha-\tan \beta)}{g}=\frac{2 V_{o}^{2} \cos ^{2} \alpha}{g \cos \beta}(\tan \alpha-\tan \beta)
$$

If we want the best range, the derivative of R with respect to α should be zero, so:

$$
\frac{\partial}{\partial \alpha}\left(\frac{2 V_{o}^{2} \cos ^{2} \alpha}{g \cos \beta}(\tan \alpha-\tan \beta)\right)=0 \rightarrow \frac{\partial}{\partial \alpha}\left((\tan \alpha-\tan \beta) \cos ^{2} \alpha\right)=0
$$

Taking the derivative:
$\frac{\partial}{\partial \alpha}\left((\tan \alpha-\tan \beta) \cos ^{2} \alpha\right)=\frac{1}{\cos ^{2} \alpha} \cos ^{2} \alpha-(\tan \alpha-\tan \beta) 2 \cos \alpha \sin \alpha=0$
$\rightarrow(\tan \alpha-\tan \beta) \sin 2 \alpha=1$

This last equation can be simplified as follows:
$(\tan \alpha-\tan \beta)=\frac{1}{\sin 2 \alpha}$
$\tan \beta=\tan \alpha-\frac{1}{\sin 2 \alpha}=\frac{2 \sin ^{2} \alpha-1}{2 \sin \alpha \cos \alpha}=-\frac{\cos 2 \alpha}{\sin 2 \alpha}=-\cot 2 \alpha$
Using the equation: $\tan (-\beta)=-\tan \beta$ we get:
$\tan (-\beta)=\cot 2 \alpha$
And since $\cot 2 \alpha=\tan (90-2 \alpha)$ we get:
$\tan (-\beta)=\tan (90-2 \alpha) \rightarrow-\beta=90-2 \alpha \rightarrow$
$\alpha=45^{\circ}+\beta / 2$
For example, for $\beta=20^{\circ}$, the best angle is $\alpha=45^{\circ}+20^{\circ} / 2=55^{\circ}$, which is highlighted in red in the following figure:

Interestingly, the solution also works for negative slopes, for example for $\beta=-20^{\circ}$, the best angle is $\alpha=45^{\circ}+\left(-20^{\circ}\right) / 2=35^{\circ}$, which is highlighted in red in the following figure:

