
Classical Mechanics 

Damped oscillator 
 

 
Problem 1.- Prove that for a lightly damped oscillator, the change in frequency caused by the 

damping is approximately 
28Q

oω
. Based on that, if damping causes a 1% decrease in the 

frequency of an oscillator, what is its Q value? 

 

Solution: 

  

a) Proof: 

When the system is lightly damped, the angular frequency drops to the value given by: 
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We can rearrange the equation as follows: 
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If the system is truly lightly damped, the ratio 
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But by definition 
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With this change of variable, we get: 
22

2

1
82

2

Q

Q
o

o

o

oo

ω

ω

ω

ωωω =






























=−  

 

b) 1% decrease in the frequency: It means that 01.0
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Problem 2.- Calculate the position x(t) of the critically damped oscillator shown in the figure 

whose mass is M=10kg and its spring constant k=40N/m. Consider that x is measured with 

respect to the equilibrium condition and the initial velocity v(0)=0 and initial position x(0)=1.5 m 

 

 



Solution: The differential equation is: 02
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If the oscillator is critically damped, it means that: srad
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The solution has the form: tt
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The initial conditions will give us the constants A and B: 

 

Ax == 5.1)0(  

 

and  

 

3022222)0( 222 =→=+−=−+−=−+−= −−−
BBABtBABteBeAex

ttt
�  

 
2 21.5 3t t

x e te
− −= +  

 

 

Problem 2a.-  Calculate the position x(t) of the critically damped oscillator shown in the figure 

whose mass is M=5kg and its spring constant k=20N/m. Consider that x is measured with respect 

to the equilibrium condition and the initial velocity v(0)=0 and initial position x(0)=1.5 m 

 

 
 

Solution: 
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The initial conditions will give us the constants A and B: 
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Problem 2c.- Calculate the free response of the oscillator shown in the figure. Indicate x(t) as a 

function of time as your answer. Consider that x is measured with respect to the equilibrium 

condition and the initial velocity v=6m/s and initial position x=0 

 

M=5kg, k=5 N/m and b=1 Ns/m 
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 …. Under-damped case. 
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Initial conditions:  
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Problem 2d.- Calculate the free response of the oscillator shown in the figure. Indicate x(t) as a 

function of time as your answer. 

 

Consider that x is measured with respect to the equilibrium condition and the initial velocity 

v=0.5m/s and x(0)=1m 

 



 
 

a) for M=2.5kg, k=10 N/m and b=5 Ns/m 

 

b) for M=2.5kg, k=10 N/m and b=10 Ns/m 

 

c) for M=2.5kg, k=10 N/m and b=20 Ns/m 

 

Solution:  
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 …. Under-damped case. 
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Initial conditions:  
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 …. Critically damped case 
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Initial conditions:  

 



1)0( == Ax  
ttt

BeBteAetx
222 22)( −−− +−−=�  

5.25.02)0( =→=+−= BBAx�  

 

Solution: 2 22.5t t
x e te

− −= +  

 

c) 02
2

=++
�

��� ωβxx  

srad
M

b
/4

5.22

20

2
=

×
==β  

 

Over-damped case: 
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Initial conditions:  
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Problem 2e.- Calculate the free response of the oscillator shown in the figure. Indicate x(t) as a 

function of time as your answer. 

Consider that x is measured with respect to the equilibrium condition and the initial velocity 

v=0.15m/s and x(0)=0 

 
 



a) for M=2.5kg, k=10 N/m and b=5 Ns/m 

b) for M=2.5kg, k=10 N/m and b=10 Ns/m 

c) for M=2.5kg, k=10 N/m and b=20 Ns/m 
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a) 02
2

=++
�

��� ωβxx  

srad
M

b
/1

5.22

5

2
=

×
==β  

srad /73.114 222

1 =−=−= βωω
�

 …. Under-damped case. 

 

( )φ+= −
tAex

t 73.1sin  

 

Initial conditions:  
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Initial conditions:  
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Over-damped case: 
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Problem 3.-  A small fiber vibrates like a simple harmonic oscillator with light damping. In one 

experiment you determine that the maximum amplitude occurs when the driving frequency is 

f=134 kHz, but the angular delay between driving force and oscillation reaches 90º at f=136 kHz. 

Based on these results, what is the natural frequency of oscillation in the absence of damping and 

how much is β ? 

 

Solution: The angular delay between driving force and oscillation is given by: 
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This value reaches 90º when ωω =o , so == )136(2 kHzo πω  855 krad/s 

 

The resonance condition is 22
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