Classical Mechanics

Damped oscillator

Problem 1.- Prove that for a lightly damped oscillator, the change in frequency caused by the damping is approximately $\frac{\omega_{o}}{8 Q^{2}}$. Based on that, if damping causes a 1% decrease in the frequency of an oscillator, what is its Q value?

Solution:

a) Proof:

When the system is lightly damped, the angular frequency drops to the value given by:
$\omega_{1}=\sqrt{\omega_{o}^{2}-\beta^{2}}$
We can rearrange the equation as follows: $\omega_{1}=\omega_{o} \sqrt{1-\frac{\beta^{2}}{\omega_{o}{ }^{2}}}$
If the system is truly lightly damped, the ratio $\frac{\beta^{2}}{\omega_{o}{ }^{2}}$ is small, so we can approximate the radical by: $\omega_{1}=\omega_{o}\left(1-\frac{\beta^{2}}{2 \omega_{o}^{2}}\right)$ so the change in frequency is $\omega_{o}-\omega_{1}=\omega_{o}\left(\frac{\beta^{2}}{2 \omega_{o}^{2}}\right)$
But by definition $Q=\frac{\omega_{R}}{2 \beta} \approx \frac{\omega_{o}}{2 \beta} \rightarrow \beta \approx \frac{\omega_{o}}{2 Q}$
With this change of variable, we get: $\omega_{o}-\omega_{1}=\omega_{o}\left(\frac{\left(\frac{\omega_{o}}{2 Q}\right)^{2}}{2 \omega_{o}{ }^{2}}\right)=\frac{\omega_{o}}{8 Q^{2}}$
b) $\mathbf{1 \%}$ decrease in the frequency: It means that $\frac{1}{8 Q^{2}}=0.01$, so $Q=\sqrt{\frac{1}{0.08}}=\mathbf{3 . 5}$

Problem 2.- Calculate the position $\mathrm{x}(\mathrm{t})$ of the critically damped oscillator shown in the figure whose mass is $\mathrm{M}=10 \mathrm{~kg}$ and its spring constant $\mathrm{k}=40 \mathrm{~N} / \mathrm{m}$. Consider that x is measured with respect to the equilibrium condition and the initial velocity $\mathrm{v}(0)=0$ and initial position $\mathrm{x}(0)=1.5 \mathrm{~m}$

Solution: The differential equation is: $\ddot{x}+2 \beta \dot{x}+\omega_{o}{ }^{2}=0$
If the oscillator is critically damped, it means that: $\beta=\omega_{o}=\sqrt{\frac{k}{m}}=\sqrt{\frac{20}{5}}=2 \mathrm{rad} / \mathrm{s}$
The solution has the form: $x=A e^{-2 t}+B t e^{-2 t}$
The initial conditions will give us the constants \boldsymbol{A} and \boldsymbol{B} :
$x(0)=1.5=A$
and

$$
\begin{aligned}
& \dot{x}(0)=-2 A e^{-2 t}+B e^{-2 t}-2 B t e^{-2 t}=-2 A+B-2 B t=-2 A+B=0 \rightarrow B=3 \\
& x=1.5 e^{-2 t}+3 t e^{-2 t}
\end{aligned}
$$

Problem 2a.- Calculate the position $\mathrm{x}(\mathrm{t})$ of the critically damped oscillator shown in the figure whose mass is $\mathrm{M}=5 \mathrm{~kg}$ and its spring constant $\mathrm{k}=20 \mathrm{~N} / \mathrm{m}$. Consider that x is measured with respect to the equilibrium condition and the initial velocity $\mathrm{v}(0)=0$ and initial position $\mathrm{x}(0)=1.5 \mathrm{~m}$

Solution:

The differential equation is: $\ddot{x}+2 \beta \dot{x}+\omega_{o}{ }^{2}=0$
If the oscillator is critically damped, it means that: $\beta=\omega_{o}=\sqrt{\frac{k}{m}}=\sqrt{\frac{20}{5}}=2 \mathrm{rad} / \mathrm{s}$
The solution has the form: $x=A e^{-2 t}+B t e^{-2 t}$
The initial conditions will give us the constants \boldsymbol{A} and \boldsymbol{B} :
$x(0)=1.5=A$
and $\quad \dot{x}(0)=-2 A e^{-2 t}+B e^{-2 t}-2 B t e^{-2 t}=-2 A+B-2 B t=-2 A+B=0 \rightarrow B=3$
$x=1.5 e^{-2 t}+3 t e^{-2 t}$

Problem 2c.- Calculate the free response of the oscillator shown in the figure. Indicate $x(t)$ as a function of time as your answer. Consider that x is measured with respect to the equilibrium condition and the initial velocity $\mathrm{v}=6 \mathrm{~m} / \mathrm{s}$ and initial position $\mathrm{x}=0$
$\mathrm{M}=5 \mathrm{~kg}, \mathrm{k}=5 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=1 \mathrm{Ns} / \mathrm{m}$

Solution: $\ddot{x}+2 \beta \dot{x}+\omega_{\circ}{ }^{2}=0$
$\beta=\frac{b}{2 M}=\frac{1}{2 \times 5}=0.1$
$\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}=\sqrt{1-0.1^{2}}=0.995 \ldots$. Under-damped case.
$x=A e^{-0.1 t} \sin (0.995 t)+B e^{-0.1 t} \cos (0.995 t)$

Initial conditions:
$x(0)=B=0 \rightarrow B=0$
$\dot{x}(t)=-0.1 A e^{-0.1 t} \sin (0.995 t)+A e^{-0.1 t} \cos (0.995 t)$
$\dot{x}(0)=A 0.995=6 \rightarrow A=6.03$

Solution: $x=6.03 e^{-0.1 t} \sin (0.995 t)$

Problem 2d.- Calculate the free response of the oscillator shown in the figure. Indicate $x(t)$ as a function of time as your answer.

Consider that x is measured with respect to the equilibrium condition and the initial velocity $\mathrm{v}=0.5 \mathrm{~m} / \mathrm{s}$ and $\mathrm{x}(0)=1 \mathrm{~m}$

a) for $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=5 \mathrm{Ns} / \mathrm{m}$
b) for $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=10 \mathrm{Ns} / \mathrm{m}$
c) for $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=20 \mathrm{Ns} / \mathrm{m}$

Solution:

a) $\ddot{x}+2 \beta \dot{x}+\omega_{0}{ }^{2}=0$
$\beta=\frac{b}{2 M}=\frac{5}{2 \times 2.5}=1 \mathrm{rad} / \mathrm{s}$
$\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}=\sqrt{4-1^{2}}=1.73 \mathrm{rad} / \mathrm{s} \ldots$ Under-damped case.
$x=A e^{-t} \sin (1.73 t)+B e^{-t} \cos (1.73 t)$
Initial conditions:

$$
\begin{aligned}
& x(0)=B=1 \rightarrow B=1 \\
& \dot{x}(t)=-A e^{-t} \sin (1.73 t)-B e^{-t} \cos (1.73 t)+1.73 A e^{-t} \cos (1.73 t)-1.73 B e^{-t} \sin (1.73 t) \\
& \dot{x}(0)=-B+1.73 A=0.5 \rightarrow A=\frac{0.5+1}{1.73}=0.866
\end{aligned}
$$

Solution: $x=0.866 e^{-t} \sin (1.73 t)+e^{-t} \cos (1.73 t)$
b) $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2}=0$
$\beta=\frac{b}{2 M}=2 \mathrm{rad} / \mathrm{s}$
$\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}=0 \ldots$ Critically damped case
$x=A e^{-2 t}+B t e^{-2 t}$
Initial conditions:

$$
\begin{aligned}
& x(0)=A=1 \\
& \dot{x}(t)=-2 A e^{-2 t}-2 B t e^{-2 t}+B e^{-2 t} \\
& \dot{x}(0)=-2 A+B=0.5 \rightarrow B=2.5
\end{aligned}
$$

Solution: $x=e^{-2 t}+2.5 t e^{-2 t}$
c) $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2}=0$

$$
\beta=\frac{b}{2 M}=\frac{20}{2 \times 2.5}=4 \mathrm{rad} / \mathrm{s}
$$

Over-damped case:
$r_{1}=-\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}=-4+\sqrt{12}=-0.535$
$r_{2}=-\beta-\sqrt{\beta^{2}-\omega_{\circ}^{2}}=-4-\sqrt{12}=-7.464$
$x=A e^{-0.535 t}+B e^{-7.464 t}$
Initial conditions:
$x(0)=A+B=1$
$\dot{x}(0)=-0.535 A-7.464 B=0.5$
So: $A=\frac{\left|\begin{array}{cc}1 & 1 \\ 0.5 & -7.464\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ -0.535 & -7.464\end{array}\right|}=\frac{-7.464-0.5}{-7.464+0.535}=1.15 \rightarrow B=-0.15$
Solution: $x=1.15 e^{-0.535 t}-0.15 e^{-7.464 t}$
Problem 2e.- Calculate the free response of the oscillator shown in the figure. Indicate $x(t)$ as a function of time as your answer.
Consider that x is measured with respect to the equilibrium condition and the initial velocity $\mathrm{v}=0.15 \mathrm{~m} / \mathrm{s}$ and $\mathrm{x}(0)=0$

a) for $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=5 \mathrm{Ns} / \mathrm{m}$
b) for $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=10 \mathrm{Ns} / \mathrm{m}$
c) for $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and $\mathrm{b}=20 \mathrm{Ns} / \mathrm{m}$

Solution:

a) $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2}=0$
$\beta=\frac{b}{2 M}=\frac{5}{2 \times 2.5}=1 \mathrm{rad} / \mathrm{s}$
$\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}=\sqrt{4-1^{2}}=1.73 \mathrm{rad} / \mathrm{s} \ldots$ Under-damped case.
$x=A e^{-t} \sin (1.73 t+\phi)$
Initial conditions:

$$
\begin{aligned}
& x(0)=A \sin (\phi)=0 \rightarrow \phi=0 \\
& \dot{x}(0)=1.73 A \cos (0)=0.15 \rightarrow A=\frac{0.15}{1.73}
\end{aligned}
$$

Solution: $x=0.0866 e^{-t} \sin (1.73 t)$
b) $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2}=0$

$$
\beta=\frac{b}{2 M}=2 \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}=0 \ldots . \text { Critically damped case }
$$

$$
x=A e^{-2 t}+B t e^{-2 t}
$$

Initial conditions:

$$
\begin{aligned}
& x(0)=A=0 \\
& \dot{x}(0)=B=0.15
\end{aligned}
$$

Solution: $\quad x=0.15 t e^{-2 t}$
c) $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2}=0$

$$
\beta=\frac{b}{2 M}=\frac{20}{2 \times 2.5}=4 \mathrm{rad} / \mathrm{s}
$$

Over-damped case:

$$
\begin{aligned}
& r_{1}=-\beta+\sqrt{\beta^{2}-\omega_{o}^{2}}=-4+\sqrt{12}=-0.535 \\
& r_{2}=-\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}=-4-\sqrt{12}=-7.464 \\
& x=A e^{-0.535 t}+B e^{-7.464 t}
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
& x(0)=A+B=0 \\
& \dot{x}(0)=-0.535 A-7.464 B=0.15
\end{aligned}
$$

So: $A=\frac{\left|\begin{array}{cc}0 & 1 \\ 0.15 & -7.464\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ -0.535 & -7.464\end{array}\right|}=\frac{-0.15}{-7.464+0.535}=0.0216$ and $B=-0.0216$
Solution: $x=0.0216\left(e^{-0.535 t}-e^{-7.464 t}\right)$

Problem 3.- A small fiber vibrates like a simple harmonic oscillator with light damping. In one experiment you determine that the maximum amplitude occurs when the driving frequency is $\mathrm{f}=134 \mathrm{kHz}$, but the angular delay between driving force and oscillation reaches 90° at $\mathrm{f}=136 \mathrm{kHz}$. Based on these results, what is the natural frequency of oscillation in the absence of damping and how much is β ?

Solution: The angular delay between driving force and oscillation is given by:
$\delta=\tan ^{-1}\left(\frac{2 \beta \omega}{\omega_{o}^{2}-\omega^{2}}\right)$
This value reaches 90° when $\omega_{o}=\omega$, so $\omega_{o}=2 \pi(136 \mathrm{kHz})=\mathbf{8 5 5} \mathbf{~ k r a d} / \mathrm{s}$
The resonance condition is $\omega=\omega_{R}=\sqrt{\omega_{o}^{2}-2 \beta^{2}}$, so:

$$
\beta=\sqrt{\frac{\omega_{o}^{2}-\omega^{2}}{2}}=2 \pi \sqrt{\frac{136 k H z^{2}-134 k H z^{2}}{2}}=\mathbf{1 0 4} \mathrm{krad} / \mathrm{s}
$$

