Classical Mechanics

General oscillations

Problem 1.- Consider a potential given by:
$V=\frac{1}{2} x^{n}, \quad$ where n is given

Calculate the period of oscillations for a 1-kg particle trapped in that potential that has total energy $=0.5 \mathrm{~J}$.

Solution: The total energy is the sum of potential and kinetic energy:
$T . E .=V+K . E=\frac{1}{2} x^{n}+\frac{1}{2} m v^{2} \rightarrow v=\sqrt{\frac{2}{m}\left(T . E .-\frac{1}{2} x^{n}\right)}$
But $v=\frac{d x}{d t} \rightarrow d t=\frac{d x}{v}=\frac{d x}{\sqrt{\frac{2}{m}\left(T . E .-\frac{1}{2} x^{n}\right)}}=\frac{d x}{\sqrt{\frac{2}{1}\left(0.5-\frac{1}{2} x^{n}\right)}}=\frac{d x}{\sqrt{1-x^{n}}}$

To find the period we can use the symmetry of the problem and calculate the time it takes to get from $\mathrm{x}=0$ to $\mathrm{x}=1$ (the turning point) and multiply by 4 :
$T=4 \int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}$
If $\mathrm{n}=2$ the integral is simple, and for higher exponents we can use numerical techniques to get:
For $\mathrm{n}=4, \quad \mathrm{~T}=5.24$
For $\mathrm{n}=6, \quad \mathrm{~T}=4.85$
For $\mathrm{n}=8, \quad \mathrm{~T}=4.65$
For $\mathrm{n}=10, \quad \mathrm{~T}=4.52$
For $\mathrm{n}=12, \quad \mathrm{~T}=4.44$
For $n=14, \quad T=4.38$
Problem 2.- A particle trapped in the potential: P.E. $=3 x^{5}-4 x$ oscillates at $\omega=0.55 \mathrm{rad} / \mathrm{s}$ around the equilibrium point x_{o} Find the mass of the particle.

Solution: First we find the value of x_{o} :
$\frac{\mathrm{dP} . E .}{\mathrm{dx}}=15 x^{4}-4=0 \rightarrow x_{o}=\sqrt[4]{\frac{4}{15}}$
Then the value of the " k " constant is: " k " $=\frac{\mathrm{d}^{2} \mathrm{P} \cdot E .}{\mathrm{dx}{ }^{2}}=60 x^{3}=60\left(\frac{4}{15}\right)^{3 / 4}$
The value of $\omega=0.55 \mathrm{rad} / \mathrm{s}$ can be written as:
$\omega=\sqrt{\frac{k}{m}} \rightarrow m=\frac{k}{\omega^{2}}=\frac{60\left(\frac{4}{15}\right)^{3 / 4}}{0.55^{2}}=73.6 \mathrm{~kg}$

Problem 2a.- A particle of mass m is trapped in the potential:
$\mathrm{V}=a x^{5}-b x$
Where a and b are positive constants. Find the value of x_{o}, where the potential has a local minimum and find the angular frequency of small oscillations of the particle around that point.

Solution: We first find the minimum point:
$\frac{\mathrm{dV}}{d x}=0=5 a x^{4}-b \rightarrow x_{o}=\sqrt[4]{\frac{b}{5 a}}$
Then we expand the potential $\mathrm{V}=\mathrm{V}\left(x_{o}\right)+\left.\frac{d \mathrm{~V}}{d x}\right|_{x_{o}}\left(x-x_{o}\right)+\left.\frac{1}{2} \frac{d^{2} \mathrm{~V}}{d x^{2}}\right|_{x_{o}}\left(x-x_{o}\right)^{2}+\ldots$
We notice that:

$$
\left.\frac{d^{2} \mathrm{~V}}{d x^{2}}\right|_{x_{o}}=20 a x_{o}^{3}=20 a\left(\sqrt[4]{\frac{b}{5 a}}\right)^{3}
$$

Since it is a positive number, it will dominate small oscillations and the motion will be approximately simple harmonic with angular frequency:

$$
\omega_{o}=\sqrt{\frac{\left.\frac{d^{2} \mathrm{~V}}{d x^{2}}\right|_{x_{o}}}{m}}=\sqrt{\frac{20 a\left(\sqrt[4]{\frac{b}{5 a}}\right)^{3}}{m}}=\sqrt{\frac{4}{m}(5 a b)^{3 / 4}}
$$

Problem 3.- A particle of mass 2 kg and total energy 1.0J is trapped in a potential given by the functions shown in the figure. Calculate the period of its oscillation:

Solution: The velocity of the particle as a function of position can be calculated from conservation of mechanical energy:
TotalEnergy $=P E+K E=P E+\frac{1}{2} m \dot{x}^{2} \rightarrow \dot{x}= \pm \sqrt{\frac{2(T E-P E)}{m}}$,
To get the period of oscillation we integrate the differential of time $d t=\frac{d x}{\dot{x}}$ from one turning point $x_{1}=-1 m$ to the other $x_{2}=1 m$ and multiply by 2 :
$T($ period $)=2 \int_{x 1}^{x 2} \frac{d x}{\dot{x}}$
Between $\mathrm{x}=-1 \mathrm{~m}$ and $\mathrm{x}=0$ the velocity is: $\dot{x}=\sqrt{\frac{2(1-0)}{2}}=1 \mathrm{~m} / \mathrm{s}$ and between $\mathrm{x}=0$ and $\mathrm{x}=1 \mathrm{~m}$ it is $\dot{x}=\sqrt{\frac{2(1-0.75)}{2}}=0.5 \mathrm{~m} / \mathrm{s}$, so the period is:
$T=2 \int_{-1}^{0} \frac{d x}{1}+2 \int_{0}^{1} \frac{d x}{0.5}=\mathbf{6 s}$
Problem 4.-.- Consider a model of a potential given by: $U=a e^{-b x}+c x$ where a, b and c are all positive constants.
Find the equilibrium point x_{o} where the force on a particle of mass m is zero and calculate the angular frequency of small oscillations around that point.

Solution: To find the equilibrium point: $\frac{d U}{d x}=-a b e^{-b x}+c=0 \rightarrow x_{o}=\frac{1}{b} \ln \left(\frac{a b}{c}\right)$ And to find the frequency for small oscillations:

$$
\left.\frac{d^{2} U}{d x^{2}}\right|_{x_{o}}=a b^{2} e^{-b x_{o}}=a b^{2} \frac{c}{a b}=b c \quad \rightarrow \omega_{o}=\sqrt{\frac{\frac{d^{2} U}{d x^{2}}}{m}}=\sqrt{\frac{b c}{m}}
$$

