Classical Mechanics
General oscillations

Problem 1.- Consider a potential given by:

1 .
V= Ex", where n is given

Calculate the period of oscillations for a 1-kg particle trapped in that potential that has total
energy = 0.5 J.

Solution: The total energy is the sum of potential and kinetic energy:

T.E.=V+K.E=lx"+lmv2—>v= g(T.E.—lx")
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To find the period we can use the symmetry of the problem and calculate the time it takes to get
from x=0 to x=1 (the turning point) and multiply by 4:

dx
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If n=2 the integral is simple, and for higher exponents we can use numerical techniques to get:
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Forn=12, T=4.44
For n = 14, T=4.38

Problem 2.- A particle trapped in the potential: PE.=3x"—4x oscillates at
® = 0.55rad /s around the equilibrium point x, Find the mass of the particle.
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Solution: First we find the value of x,:
dP.E. =15x"-4=0—>x, = ﬂi
dx 15
d’P.E.
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Then the value of the “k” constant is: "k"= v =60x° = 60(%)
X

The value of ®=0.55rad/s can be written as:
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[k k 60[11')
0=,——->m=—=——2—=73.6kg
m w 0.55

Problem 2a.- A particle of mass m is trapped in the potential:
V =ax’ —bx
Where a and b are positive constants. Find the value of x,, where the potential has a local

minimum and find the angular frequency of small oscillations of the particle around that point.
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Solution: We first find the minimum point:

d—V=0=5ax4—b%x0=41/£
dx Sa
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Then we expand the potential V = V(x,) +;’ﬂ Ldv
X
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We notice that:
3
2
V) _ 20ax. = 206{41,ij
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dx?
Since it is a positive number, it will dominate small oscillations and the motion will be
approximately simple harmonic with angular frequency:




Problem 3.- A particle of mass 2kg and total energy 1.0J is trapped in a potential given by the
functions shown in the figure. Calculate the period of its oscillation:
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Solution: The velocity of the particle as a function of position can be calculated from
conservation of mechanical energy:

TotalEnergy = PE-+ KE = P+ mi? — o= £, 2012
m

To get the period of oscillation we integrate the differential of time dr :d—‘x from
X

one turning point x, =—1Im to the other x, =1m and multiply by 2:

xzdx
T (period) = 2.[—_
X
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2029 _ 1,75 and between x=0 and x=1m it is

Between x=-1m and x=0 the velocity is: x =

x= Jw =0.5m/s, so the period is:

T = 2i%+2§;% =6s

Problem 4.- .- Consider a model of a potential given by: U =ae™™ +cx where a, b and c are all
positive constants.
Find the equilibrium point x, where the force on a particle of mass m is zero and calculate the

angular frequency of small oscillations around that point.



Solution: To find the equilibrium point: LZ—U =—abe™

X
And to find the frequency for small oscillations:
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