Classical Mechanics

Resonance

Problem 1.- Sketch the velocity as a function of the angular frequency for a damped oscillator with $\mathrm{Q}=10$ and show that the full width of the curve between the points corresponding to $\frac{\mathrm{v}_{\max }}{\sqrt{2}}$ is approximately $\frac{\omega_{o}}{10}$.
Solution: We plot the velocity amplitude: $\frac{A \omega}{\sqrt{\left(\omega^{2}-\omega_{o}^{2}\right)^{2}+4 \omega^{2} \beta^{2}}}$ for the case of $\mathrm{Q}=10$, meaning that $\beta \approx \frac{\omega_{o}}{20}$, so the function is:

$$
\frac{A \omega}{\sqrt{\left(\omega^{2}-\omega_{o}^{2}\right)^{2}+4 \omega^{2}\left(\omega_{o} / 20\right)^{2}}}=\frac{A}{\omega_{o}} \frac{\omega / \omega_{o}}{\sqrt{\left(\omega^{2} / \omega_{o}^{2}-1\right)^{2}+0.01 \omega^{2} / \omega_{o}^{2}}}
$$

With the change of variable $y=\omega / \omega_{o}$, the amplitude becomes:
$\frac{A}{\omega_{o}} \frac{y}{\sqrt{\left(y^{2}-1\right)^{2}+0.01 y^{2}}}$
So, yes the separation between the points that correspond to $\frac{V_{\max }}{\sqrt{2}}$ is $\omega_{o} / Q=\omega_{o} / 10$ which in terms of y corresponds to 0.1

y

Problem 2.- A small fiber vibrates like a simple harmonic oscillator with light damping. In one experiment you determine that the maximum amplitude occurs when the driving frequency is $\mathrm{f}=134 \mathrm{kHz}$, but the angular delay between driving force and oscillation reaches 90° at $\mathrm{f}=136 \mathrm{kHz}$. Based on these results, what is the natural frequency of oscillation in the absence of damping? and how much is β ?

Solution: The angular delay between driving force and oscillation is:
$\delta=\tan ^{-1}\left(\frac{2 \beta \omega}{\omega_{o}^{2}-\omega^{2}}\right)$
This value reaches 90° when $\omega_{o}=\omega$, so $\omega_{o}=2 \pi(136 \mathrm{kHz})=\mathbf{8 5 5} \mathbf{~ k r a d} / \mathrm{s}$

The resonance condition is $\omega=\omega_{R}=\sqrt{\omega_{o}{ }^{2}-2 \beta^{2}}$, so:
$\beta=\sqrt{\frac{\omega_{o}^{2}-\omega^{2}}{2}}=2 \pi \sqrt{\frac{136 k H z^{2}-134 k H z^{2}}{2}}=104 \mathrm{krad} / \mathrm{s}$

