Classical Mechanics

Resonance

Problem 1.- Sketch the velocity as a function of the angular frequency for a damped oscillator with Q=10 and show that the full width of the curve between the points corresponding to $\frac{v_{max}}{\sqrt{2}}$ is

approximately $\frac{\omega_o}{10}$.

Solution: We plot the velocity amplitude: $\frac{A\omega}{\sqrt{(\omega^2 - \omega_o^2)^2 + 4\omega^2\beta^2}}$ for the case of Q=10, meaning

that $\beta \approx \frac{\omega_o}{20}$, so the function is: $\frac{A\omega}{\sqrt{(\omega^2 - \omega_o^2)^2 + 4\omega^2(\omega_o/20)^2}} = \frac{A}{\omega_o} \frac{\omega/\omega_o}{\sqrt{(\omega^2/\omega_o^2 - 1)^2 + 0.01\omega^2/\omega_o^2}}$

With the change of variable $y = \omega / \omega_o$, the amplitude becomes:

$$\frac{A}{\omega_o} \frac{y}{\sqrt{(y^2-1)^2+0.01y^2}}$$

So, yes the separation between the points that correspond to $\frac{V_{\text{max}}}{\sqrt{2}}$ is $\omega_o/Q = \omega_o/10$ which in terms of y corresponds to 0.1

Problem 2.- A small fiber vibrates like a simple harmonic oscillator with light damping. In one experiment you determine that the maximum amplitude occurs when the driving frequency is f=134 kHz, but the angular delay between driving force and oscillation reaches 90° at f=136 kHz. Based on these results, what is the natural frequency of oscillation in the absence of damping? and how much is β ?

Solution: The angular delay between driving force and oscillation is:

$$\boldsymbol{\delta} = \tan^{-1} \left(\frac{2\beta \boldsymbol{\omega}}{\boldsymbol{\omega}_o^2 - \boldsymbol{\omega}^2} \right)$$

This value reaches 90° when $\omega_{a} = \omega$, so $\omega_{a} = 2\pi (136 kHz) = 855$ krad/s

The resonance condition is $\omega = \omega_R = \sqrt{\omega_o^2 - 2\beta^2}$, so:

$$\beta = \sqrt{\frac{\omega_o^2 - \omega^2}{2}} = 2\pi \sqrt{\frac{136kHz^2 - 134kHz^2}{2}} = 104 \text{ krad/s}$$