Classical Mechanics

Small Oscillations

Problem 1.- Consider a pendulum made by attaching a mass m to a string with negligible mass and length l and fixing one end to the highest point of a cylinder of radius R and letting the mass hung to the side. Find the equation of motion of the mass and the frequency for small oscillations.

Solution: First we write x and y in terms of the variable

$x=c+d=R \sin \theta+(l-R \theta) \cos \theta$
$y=-a-b=-R(1-\cos \theta)-(l-R \theta) \sin \theta$

Notice that x and y depend on θ only, so that is our only coordinate. We will find just one equation of motion. Next, we calculate the velocities:

$$
\begin{aligned}
& \dot{x}=\dot{\theta}[R \cos \theta+(l-R \theta) \sin \theta-R \cos \theta]=\dot{\theta}(l-R \theta) \sin \theta \\
& \dot{y}=\dot{\theta}[-R \sin \theta-(l-R \theta) \cos \theta+R \sin \theta]=-\dot{\theta}(l-R \theta) \cos \theta
\end{aligned}
$$

These equations allow us to write down the kinetic energy:

$$
K . E .=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m \dot{\theta}^{2}(l-R \theta)^{2}
$$

To find the Lagrangian, we also need the potential energy:

$$
\text { P.E. }=m g y=m g[-R(1-\cos \theta)-(l-R \theta) \sin \theta]
$$

With these two equations the Lagrangian is:
$L=K . E .-P . E .=\frac{1}{2} m \dot{\theta}^{2}(l-R \theta)^{2}+m g[R(1-\cos \theta)+(l-R \theta) \sin \theta]$
To find the equation of motion we take derivatives.
Partial derivative of L with respect to $\dot{\theta}$:
$\frac{\partial L}{\partial \dot{\theta}}=m \dot{\theta}(l-R \theta)^{2}$
Then the total derivative of this last expression with respect to time:
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m \ddot{\theta}(l-R \theta)^{2}-2 m R \dot{\theta}^{2}(l-R \theta)$
And the derivative of L with respect to θ :

$$
\frac{\partial L}{\partial \theta}=-R m \dot{\theta}^{2}(l-R \theta)+m g(l-R \theta) \cos \theta
$$

Then the equation of motion is:
$m \ddot{\theta}(l-R \theta)^{2}-2 m R \dot{\theta}^{2}(l-R \theta)=-R m \dot{\theta}^{2}(l-R \theta)+m g(l-R \theta) \cos \theta$
$\ddot{\theta}(l-R \theta)-R \dot{\theta}^{2}-g \cos \theta=0$
Change of variables to simplify equation:

$$
\theta=\frac{\pi}{2}+\delta \quad \cos \theta=-\sin \delta \quad l-R \frac{\pi}{2}=C \rightarrow l-R \theta=C-R \delta
$$

The equation with the changes looks as follows: $\ddot{\boldsymbol{\delta}}(C-R \boldsymbol{\delta})-R \dot{\delta}^{2}+g \sin \delta=0$
Small oscillations imply that δ is very small, so we can ignore second order terms and approximate $\sin \delta \approx \delta$, so:
$C \ddot{\delta}+g \delta=0 \quad$ whose frequency of oscillation is $\omega=\sqrt{\frac{g}{C}}=\sqrt{\frac{g}{l-\frac{\pi}{2} R}}$
For very small oscillations, the frequency is the same equation as for a normal pendulum, but the length is only the part that hangs on the side in equilibrium.

