Classical Mechanics

Gravitation

Problem 1.- Calculate the minimum speed that a particle must have on the surface of the sun to escape its gravitational attraction and leave the solar system. The mass of the sun is 1.99×10^{30} kg and its radius is 6.96×10^8 m.

Solution:

If the particle is going to escape, it needs to have zero total energy at least:

$$K.E. = -P.E. \rightarrow \frac{1}{2}mv^2 = G\frac{Mm}{r} \rightarrow v = \sqrt{2GM/r}$$

With the values of the problem:

 $v = \sqrt{2(6.67 \times 10^{-11})(1.99 \times 10^{30})/(6.96 \times 10^8)} = 618,000 \text{ m/s}$

Problem 1a.- Calculate the minimum speed that a particle must have on the surface of Pluto to escape its gravitational attraction and leave. The mass of Pluto is 1.305×10^{22} kg and its radius is 1.15×10^6 m.

Solution:

If the particle is going to escape, it needs to have zero total energy at least:

$$K.E. = -P.E. \rightarrow \frac{1}{2}mv^2 = G\frac{Mm}{r} \rightarrow v = \sqrt{2GM/r}$$

With the values of the problem:

$$v = \sqrt{2(6.67 \times 10^{-11})(1.305 \times 10^{22})/(1.15 \times 10^6)} = 1,228 \text{ m/s}$$

Problem 2.- Calculate the kinetic energy of a satellite that has a mass of 355 kg in circular orbit around the Earth at a distance of 400 km above the surface.

Solution: To be in circular orbit the gravitational potential should be minus two times the kinetic energy, so:

$$K.E. = -\frac{P.E}{2} = G\frac{Mm}{2r} = 6.67 \times 10^{-11} \frac{(5.98 \times 10^{24})(355)}{2(6.38 \times 10^6 + 400 \times 10^3)} = 1.04 \times 10^{10} \text{ J}$$

Problem 2a.- Calculate the kinetic energy of a satellite that has a mass of 84 kg in circular orbit around the Earth at a distance of 550 km above the surface.

Solution: In circular orbit the kinetic energy is minus ¹/₂ the gravitational potential:

$$K.E. = -\frac{P.E}{2} = G\frac{Mm}{2r} = 6.67 \times 10^{-11} \frac{(5.98 \times 10^{24})(84)}{2(6.38 \times 10^6 + 550 \times 10^3)} = 2.42 \times 10^9 \text{ J}$$

Problem 3.- Earlier we found that the minimum speed of a particle to escape the solar system from the surface of the Sun was 618,000 m/s. Calculate the speed of such a particle when it reaches the orbit of the Earth, which is 1.5×10^{11} m from the sun. The mass of the sun is 1.99×10^{30} kg and its radius is 6.96×10^8 m.

Solution: The total energy of the particle is zero, so when it reaches our orbit we have:

$$-G \frac{m_{particle}m_{sun}}{r_{orbit}} + \frac{1}{2}m_{particle}v^{2} = 0 \rightarrow G \frac{m_{sun}}{r_{orbit}} = \frac{1}{2}v^{2}$$
$$\rightarrow v = \sqrt{\frac{2Gm_{sun}}{r_{orbit}}} = \sqrt{\frac{2(6.67 \times 10^{-11})(1.99 \times 10^{30})}{1.5 \times 10^{11}}} = 42.1 \text{ km/s}$$

Problem 4.- Calculate the minimum distance between the surface of the Earth and a satellite that has a period of 24 hours and an eccentricity of 0.25

Give your answer in terms of the radius of the earth R_E

Consider the period of a hypothetical satellite of radius R_E to be 80 minutes.

Solution: We first use Kepler's third law to find "a", the semi-major axis of the elliptical orbit:

$$\frac{T_1^2}{a^3} = \frac{T_2^2}{R_E^3} \to a = R_E \sqrt[3]{\frac{T_1^2}{T_2^2}} = R_E \sqrt[3]{\frac{(24 \times 60)^2}{80^2}} = 6.87R_E$$

The maximum approach to the center of the Earth will be: $r_{min} = a(1-\epsilon) = 6.87 R_{E}(1-0.25) = 5.15 R_{E}$

Finally, the minimum distance to the surface of the Earth will be 4.15RE