Classical Mechanics

Gravitation

Problem 1.- Calculate the minimum speed that a particle must have on the surface of the sun to escape its gravitational attraction and leave the solar system. The mass of the sun is $1.99 \times 10^{30} \mathrm{~kg}$ and its radius is $6.96 \times 10^{8} \mathrm{~m}$.

Solution:

If the particle is going to escape, it needs to have zero total energy at least:

$$
K . E .=-P . E . \rightarrow \frac{1}{2} m v^{2}=G \frac{M m}{r} \rightarrow v=\sqrt{2 G M / r}
$$

With the values of the problem:

$$
v=\sqrt{2\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}\right) /\left(6.96 \times 10^{8}\right)}=618,000 \mathrm{~m} / \mathrm{s}
$$

Problem 1a.- Calculate the minimum speed that a particle must have on the surface of Pluto to escape its gravitational attraction and leave. The mass of Pluto is $1.305 \times 10^{22} \mathrm{~kg}$ and its radius is $1.15 \times 10^{6} \mathrm{~m}$.

Solution:

If the particle is going to escape, it needs to have zero total energy at least:
K.E. $=-P . E . \rightarrow \frac{1}{2} m v^{2}=G \frac{M m}{r} \rightarrow v=\sqrt{2 G M / r}$

With the values of the problem:

$$
v=\sqrt{2\left(6.67 \times 10^{-11}\right)\left(1.305 \times 10^{22}\right) /\left(1.15 \times 10^{6}\right)}=1,228 \mathrm{~m} / \mathrm{s}
$$

Problem 2.- Calculate the kinetic energy of a satellite that has a mass of 355 kg in circular orbit around the Earth at a distance of 400 km above the surface.

Solution: To be in circular orbit the gravitational potential should be minus two times the kinetic energy, so:

$$
K . E .=-\frac{P . E}{2}=G \frac{M m}{2 r}=6.67 \times 10^{-11} \frac{\left(5.98 \times 10^{24}\right)(355)}{2\left(6.38 \times 10^{6}+400 \times 10^{3}\right)}=1.04 \times 10^{10} \mathrm{~J}
$$

Problem 2a.- Calculate the kinetic energy of a satellite that has a mass of 84 kg in circular orbit around the Earth at a distance of 550 km above the surface.

Solution: In circular orbit the kinetic energy is minus $1 / 2$ the gravitational potential:
$K . E .=-\frac{P . E}{2}=G \frac{M m}{2 r}=6.67 \times 10^{-11} \frac{\left(5.98 \times 10^{24}\right)(84)}{2\left(6.38 \times 10^{6}+550 \times 10^{3}\right)}=2.42 \times 10^{9} \mathrm{~J}$

Problem 3.- Earlier we found that the minimum speed of a particle to escape the solar system from the surface of the Sun was $618,000 \mathrm{~m} / \mathrm{s}$. Calculate the speed of such a particle when it reaches the orbit of the Earth, which is $1.5 \times 10^{11} \mathrm{~m}$ from the sun. The mass of the sun is 1.99×10^{30} kg and its radius is $6.96 \times 10^{8} \mathrm{~m}$.

Solution: The total energy of the particle is zero, so when it reaches our orbit we have:
$-G \frac{m_{\text {particle }} m_{\text {sun }}}{r_{\text {orbit }}}+\frac{1}{2} m_{\text {particle }} v^{2}=0 \rightarrow G \frac{m_{\text {sun }}}{r_{\text {orbit }}}=\frac{1}{2} v^{2}$
$\rightarrow v=\sqrt{\frac{2 G m_{\text {sun }}}{r_{\text {orbit }}}}=\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(1.99 \times 10^{30}\right)}{1.5 \times 10^{11}}}=\mathbf{4 2 . 1} \mathbf{~ k m} / \mathrm{s}$

Problem 4.- Calculate the minimum distance between the surface of the Earth and a satellite that has a period of 24 hours and an eccentricity of 0.25

Give your answer in terms of the radius of the earth R_{E}
Consider the period of a hypothetical satellite of radius R_{E} to be 80 minutes.
Solution: We first use Kepler's third law to find "a", the semi-major axis of the elliptical orbit:

$$
\frac{\mathrm{T}_{1}^{2}}{\mathrm{a}^{3}}=\frac{\mathrm{T}_{2}^{2}}{\mathrm{R}_{\mathrm{E}}^{3}} \rightarrow \mathrm{a}=\mathrm{R}_{\mathrm{E}} \sqrt[3]{\frac{\mathrm{T}_{1}^{2}}{\mathrm{~T}_{2}^{2}}}=\mathrm{R}_{\mathrm{E}} \sqrt[3]{\frac{(24 \times 60)^{2}}{80^{2}}}=6.87 \mathrm{R}_{\mathrm{E}}
$$

The maximum approach to the center of the Earth will be:

$$
r_{\min }=a(1-\varepsilon)=6.87 R_{E}(1-0.25)=5.15 R_{E}
$$

Finally, the minimum distance to the surface of the Earth will be $\mathbf{4 . 1 5 R}_{\mathrm{E}}$

