Classical Mechanics

Precession

Problem 1.- Consider a gyroscope consisting of a disk of mass 0.25 kg and radius 0.055 m mounted at the center of an axle 0.17 m long. The gyroscope spins at 75 radians $/ \mathrm{s}$. Calculate:
a) The angular momentum of the disk
b) The torque produced by the weight of the disk
c) How long it takes for the gyroscope to precess once around.

Solution:

The moment of inertia is: $I=\frac{M R^{2}}{2}$ and then the angular momentum will be:
$L=I \omega=\frac{M R^{2}}{2} \omega=\frac{(0.25 \mathrm{~kg})(0.055 \mathrm{~m})^{2}}{2} 75 \mathrm{rad} / \mathrm{s}=\mathbf{0} .0284 \mathbf{~ k g m}^{2} \mathrm{~s}^{-1}$
The torque produced by the weight of the disk: $\tau=F r \sin \theta=m g r=0.25 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times(0.17 \mathrm{~m} / 2)=\mathbf{0 . 2 0 8} \mathbf{N m}$.

How long it takes for the gyroscope to precess once around:
$T=\frac{2 \pi L}{\tau}=\frac{2(3.1416)\left(0.0284 \mathrm{kgm}^{2} / \mathrm{s}\right)}{0.208 \mathrm{Nm}}=0.86 \mathrm{~s}$

Problem 2.- Consider a gyroscope consisting of a disk of mass 0.25 kg and radius 0.055 m mounted at the center of an axle 0.17 m long. Calculate how fast it needs to spin if it is going to take 3.5 s to precess once around.

Solution:

The gyroscope has an angular momentum of $L=I \omega=\frac{1}{2} M R^{2} \omega$ and the torque due to its weight is: $\tau=\frac{d L}{d t}=M g r$, where r is the distance from the center of mass to the pivot ($r=\frac{0.17 m}{2}=0.085 m$ in this problem) to complete one turn we need to cover $2 \pi L$, so:
$\frac{d L}{d t} T=2 \pi L \rightarrow M g r T=2 \pi \frac{1}{2} M R^{2} \omega \rightarrow \omega=\frac{g r T}{\pi R^{2}}=\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.085 \mathrm{~m})(3.5 \mathrm{~s})}{3.1416(0.055 \mathrm{~m})^{2}}=\mathbf{3 0 7} \mathrm{rad} / \mathrm{s}$

