Classical Mechanics

Collisions

Problem 1.- An alpha particle moving to the right at $\mathrm{v}_{1}=23,100 \mathrm{~m} / \mathrm{s}$ collides elastically and head on with a Lithium-7 nucleus that was initially at rest and bounces back. Calculate the velocity of the two particles after the collision.

Solution:

First equation, conservation of momentum: $4 \times 23,100=4 v_{1}{ }^{\prime}+7 v_{2}{ }^{\prime}$
Second equation, conservation of kinetic energy: $23,100+v_{1}{ }^{\prime}=v_{2}{ }^{\prime}$
By substitution: $4 \times 23,100=4 v_{1}{ }^{\prime}+7\left(23,100+v_{1}{ }^{\prime}\right) \rightarrow v_{1}{ }^{\prime}=\frac{4-7}{4+7} \times 23,100=\mathbf{- 6 , 3 0 0} \mathbf{~ m} / \mathbf{s}$

And in the second equation: $v_{2}{ }^{\prime}=v_{1}{ }^{\prime}+23,100=\mathbf{1 6 , 8 0 0} \mathbf{~ m} / \mathbf{s}$

Problem 2.- An alpha particle collides elastically and head on with an aluminum nucleus and bounces back. Calculate the velocity of the two particles after the collision.

Solution:

Conservation of linear momentum implies:
$m_{A l} v_{A l}+m_{\alpha} v_{\alpha}=m_{A l} v^{v^{\prime}}{ }^{\prime}+m_{\alpha} v^{\prime}{ }_{\alpha}$
Given that the mass of aluminum is 27 amu and the mass of an alpha particle is 4 amu , we get:
$27 v_{A l}+4 v_{\alpha}=27 v_{A l}^{\prime}+4 v_{\alpha}^{\prime} \ldots$. Equation 1
Conservation of kinetic energy implies:
$\left(v_{A l}-v_{\alpha}\right)=-\left(v_{A l}^{\prime}-v_{\alpha}^{\prime}\right)$
$v_{A l}-v_{\alpha}=-v_{A l}^{\prime}+v_{\alpha}^{\prime} \ldots$. Equation 2

Solving for $v_{A l}^{\prime}$ we get:

$$
v_{A l}^{\prime}=\frac{\left|\begin{array}{cc}
27 v_{A l}+4 v_{\alpha} & 4 \\
v_{A l}-v_{\alpha} & 1
\end{array}\right|}{\left|\begin{array}{rr}
27 & 4 \\
-1 & 1
\end{array}\right|}=\frac{27 v_{A l}+4 v_{\alpha}-4\left(v_{A l}-v_{\alpha}\right)}{27+4}=\frac{23}{31} v_{A l}+\frac{8}{31} v_{\alpha}
$$

Solving for v_{α}^{\prime} we get:

$$
v_{\alpha}^{\prime}=\frac{\left|\begin{array}{cc}
27 & 27 v_{A l}+4 v_{\alpha} \\
-1 & v_{A l}-v_{\alpha}
\end{array}\right|}{\left|\begin{array}{cc}
27 & 4 \\
-1 & 1
\end{array}\right|}=\frac{27\left(v_{A l}-v_{\alpha}\right)+27 v_{A l}+4 v_{\alpha}}{27+4}=\frac{54}{31} v_{A l}-\frac{23}{31} v_{\alpha}
$$

Problem 3.- Calculate the velocity of the particles after the totally elastic collision shown in the figure:

Solution: A schematic after the collision

Conservation of momentum applies to both directions X and Y , so:
$X: \quad m_{1} v_{1}=m_{2} v_{2}^{\prime} \cos \theta$
$Y: \quad 0=m_{1} v_{1}^{\prime}-m_{2} v_{2} \sin \theta$

With the values of the problem we can simplify these equations to give:
$v_{1}=2 v_{2}^{\prime} \cos \theta \rightarrow v_{2}^{\prime}=\frac{v_{1}}{2 \cos \theta}=\frac{600}{\cos \theta}$
$0=v_{1}^{\prime}-2 v_{2}^{\prime} \sin \theta \rightarrow v_{1}^{\prime}=2 v_{2}^{\prime} \sin \theta=1200 \tan \theta$
Conservation of kinetic energy implies: $\quad \frac{1}{2} m_{1} v_{1}{ }^{2}=\frac{1}{2} m_{1} v_{1}^{\prime 2}+\frac{1}{2} m_{2} v_{2}^{\prime}{ }^{2}$
And replacing the results from above, we get:
$v_{1}^{2}=v_{1}^{\prime 2}+2 v_{2}^{\prime 2} \rightarrow 1200^{2}=1200^{2} \tan ^{2} \theta+2 \times \frac{600^{2}}{\cos ^{2} \theta}$
$\rightarrow 4=\frac{4 \sin ^{2} \theta+2}{\cos ^{2} \theta}=\frac{6-4 \cos ^{2} \theta}{\cos ^{2} \theta}$
$\rightarrow 4 \cos ^{2} \theta=6-4 \cos ^{2} \theta$
$\rightarrow 8 \cos ^{2} \theta=6 \rightarrow \theta=\cos ^{-1}\left(\sqrt{\frac{6}{8}}\right)=\mathbf{3 0}^{\boldsymbol{\circ}}$
Knowing the angle, we can calculate the velocities:
$v_{1}^{\prime}=1200 \tan 30^{\circ}=\mathbf{6 9 3} \mathbf{~ m} / \mathrm{s}$
$v_{2}^{\prime}=\frac{600}{\cos 30^{\circ}}=693 \mathrm{~m} / \mathrm{s}$

