Classical Mechanics

Fourier series

Problem 1.- Obtain the first three terms of the Fourier series representation of the output of the half-wave rectifier (a_{o}, a_{1} and b_{1}):

Solution: The function has a period of $\mathrm{T}=2 \mathrm{~s}$, so it can be written as:
$f(t)=\frac{a_{o}}{2}+\sum a_{n} \cos \frac{2 \pi n t}{2}+\sum b_{n} \sin \frac{2 \pi n t}{2}$
In the interval [0,2] the function is equal to: $f(t)= \begin{cases}\sin \pi t & \text { if } 0<t<\pi \\ 0 & \text { otherwise }\end{cases}$
Let's find the first terms:

$$
\begin{aligned}
& a_{o}=\frac{2}{T} \int_{0}^{T} f(t) d t=\frac{2}{2} \int_{0}^{1} \sin \pi t d t=-\left.\frac{\cos \pi t}{\pi}\right|_{0} ^{1}=\frac{2}{\pi} \\
& a_{1}=\frac{2}{T} \int_{0}^{T}(\cos \pi t) f(t) d t=\frac{2}{2} \int_{0}^{1} \cos \pi t \sin \pi t d t=\int_{0}^{1} \frac{\sin 2 \pi t}{2} d t=-\left.\frac{\cos 2 \pi t}{4 \pi}\right|_{0} ^{1}=0 \\
& b_{1}=\frac{2}{T} \int_{0}^{T}(\sin \pi t) f(t) d t=\frac{2}{2} \int_{0}^{1} \sin ^{2} \pi t d t=\int_{0}^{1} \frac{1-\cos 2 \pi t}{2} d t=\left.\frac{t}{2}\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

With only these terms, the approximation is:

$$
f(t)=\frac{1}{\pi}+\frac{1}{2} \sin \pi t
$$

The figure shows this approximation:

Problem 2.- Obtain the first three terms $\left(a_{o}, a_{1}\right.$ and $\left.b_{1}\right)$: of the Fourier series representation of the saw-tooth signal shown in the figure

Solution: The saw-tooth signal can be described by:
$f(t)= \begin{cases}t & \text { if } 0<t<1 \\ 2-t & \text { if } 0<t<1\end{cases}$
With a period of $\mathrm{T}=2 \mathrm{~s}$, so the Fourier components are:

$$
\begin{aligned}
& a_{o}=\frac{2}{T} \int_{0}^{T} f(t) d t=\frac{2}{2}\left(\int_{0}^{1} t d t+\int_{1}^{2}(2-t) d t\right)=1 \\
& a_{1}=\frac{2}{T} \int_{0}^{T}(\cos \pi t) f(t) d t=\frac{2}{2}\left(\int_{0}^{1} t \cos \pi t d t+\int_{1}^{2}(2-t) \cos \pi t d t\right)=2 \int_{0}^{1} t \cos \pi t d t \\
& =2\left(\frac{1}{\pi} \int_{0}^{1} t d \sin \pi t\right)=\frac{2}{\pi}\left(\left.t \sin \pi\right|_{0} ^{1}-\int_{0}^{1} \sin \pi t d t\right)=\left.\frac{2}{\pi} \frac{\cos \pi t}{\pi}\right|_{0} ^{1}=-\frac{4}{\pi^{2}}
\end{aligned}
$$

$b_{1}=\frac{2}{T} \int_{0}^{T}(\sin \pi t) f(t) d t=\frac{2}{2}\left(\int_{0}^{1} t \sin \pi t d t+\int_{1}^{2}(2-t) \sin \pi t d t\right)=0$
With these terms, the approximation is:

$$
f(t)=\frac{1}{2}-\frac{4}{\pi^{2}} \cos \pi t
$$

Notice how good the approximation is with only these two terms.

