
Classical Mechanics 

Imposed Conditions 
 

Problem 1.- Find the size of a can (R and h) that contains the maximum possible volume, given 

that its surface area is 0.0300m2. 

 
 

Solution: This problem can be solved using Lagrange multipliers. The volume of the can is: 

 

hRVolume
2π=  

 

And the area gives us the imposed condition:  
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According to the method, the maximum value will happen when: 
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Then the equations are: 
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Dividing one equation by the other (to eliminate lambda): 
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Therefore, to get the maximum volume the height of the can has to be equal to the diameter (how 

often do you see that in the supermarket?) 

 

In our problem, this implies that: 
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And h=0.08m 

 



 
 

Problem 2.- You are in the scrap metal business. You buy metal sheets cut in the shape shown in 

the figure for pennies and sell rectangular shapes for top dollar. Calculate the size of the 

rectangular shape that will maximize your profits (you are paid by area). 

 
 

Solution: The area that you want to maximize is given by: 
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And the imposed condition is 011 33 =−+=→−= xyxy φ  

 

Using the method of Lagrange multipliers, we need to have: 
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Writing down the equations: 
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Replacing the second equation in the first we get: 
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And combining this equation with the imposed condition: 
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and the value of y is: 
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