Classical Mechanics

Successive Approximations

Problem 1.-: Obtain the solution with 4 significant figures of the equations:

1) $e^{x}=3-x$
2) $e^{-x^{2}}=x+0.5$

Solution: 1) $e^{x}=3-x$, the diagram looks like this:

An initial approximation could be $\mathrm{x}=1$, which put on the right hand side of the equation gives us:
$e^{x}=3-1=2 \rightarrow x_{1}=\ln (2)=0.6931$
Using this to get the next approximation:
$e^{x}=3-0.6931=2.3068 \rightarrow x_{2}=\ln (2.3069)=0.8359$
And repeating the process we get:
$x_{n}=1.0000,0.6931,0.8359,0.7720,0.8011,0.7880,0.7939,0.7912,0.7924$, $0.7919, \quad 0.7921, \quad 0.7920, \quad 0.7921,0.7921$

So, with four significant figures: $\mathrm{x}=0.7921$
2) $e^{-x^{2}}=x+0.5$

The diagram looks like this:

An initial approximation could be $\mathrm{x}=0.4$, which put on the left hand side of the equation gives us:
$e^{-0.4^{2}}=x+0.5 \rightarrow$
$x_{1}=e^{-0.4^{2}}-0.5=0.3521$
Using this to get the next approximation:
$e^{-0.3521^{2}}=x+0.5 \rightarrow$
$x_{1}=e^{-0.3521^{2}}-0.5=0.3834$
Repeating the process we get:
$x_{n}=0.4000,0.3521,0.3834,0.3633,0.3763,0.3679,0.3734,0.3699,0.3721$,
$0.3707,0.3716,0.3710,0.3714,0.3711,0.3713,0.3712$

So, with four significant figures: $\mathrm{x}=0.3712$
Note: starting with $\mathrm{x}=0.4$ and replacing this on the right hand side of the equation will not converge.

Problem 2.- Obtain the solution with 4 significant figures of the equation:

$$
\tan (x)=3-x \text { for } 0<x<\pi / 2
$$

Solution: Assuming we know an approximate solution x_{n} we can estimate the next approximation with:
$x_{n+1}=\tan ^{-1}\left(3-x_{n}\right)$
Starting with $\mathrm{x}=1$ we get:
$x_{2}=\tan ^{-1}(3-1)=1.107$
$x_{3}=\tan ^{-1}(3-1.107)=1.085$
$x_{4}=\tan ^{-1}(3-1.085)=1.089$
$x_{5}=\tan ^{-1}(3-1.089)=1.088$
$x_{6}=\tan ^{-1}(3-1.088)=1.087$
$x_{7}=\tan ^{-1}(3-1.087)=1.087$
And the solution converges to $\mathbf{x}=\mathbf{1 . 0 8 7}$
Problem 3.- Use successive approximations to obtain the solution with 4 significant figures of the equations:
a) $e^{x}=10-x$
b) $\sin x=1-x^{3}$

