## Modern Physics

## Lorentz transformation

These equations transform coordinates from frame $K$ to $K$ ', where frame $K^{\prime}$ moves in the positive x -direction with speed v and at $\mathrm{t}=\mathrm{t}^{\prime}=0$ the two frames coincide.
$x^{\prime}=\gamma(\mathrm{x}-\beta \mathrm{ct}) \quad \mathrm{y}^{\prime}=\mathrm{y} \quad \mathrm{z}^{\prime}=\mathrm{z} \quad \mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\beta \frac{\mathrm{x}}{\mathrm{c}}\right)$
Where $\beta=\frac{\mathrm{v}}{\mathrm{c}}$ and $\gamma=\frac{1}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}}$

Problem 1.- Consider the events:
$\mathrm{A}=(0,0,0,0)$
$B=(100 \mathrm{~m}, 0,0,1 \mu \mathrm{~s})$
a) Find a frame of reference in which the two events happen in the same place if it is possible.
b) Find a frame of reference in which the two events happen at the same time if it is possible.

## Solution:

a) If the two events happen in the same place: $x_{A}^{\prime}=x_{B}^{\prime}$ which means:

$$
\gamma\left(\mathrm{x}_{\mathrm{A}}-\beta \mathrm{ct}_{\mathrm{A}}\right)=\gamma\left(\mathrm{x}_{\mathrm{B}}-\beta \mathrm{ct}_{\mathrm{B}}\right) \rightarrow \mathrm{x}_{\mathrm{B}}-\beta \mathrm{ct}_{\mathrm{B}}=0 \rightarrow \beta=\frac{\mathrm{x}_{\mathrm{B}}}{\mathrm{ct}_{\mathrm{B}}}=\frac{100 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}\left(1 \times 10^{-6} \mathrm{~s}\right)}=\frac{1}{3}
$$

This means that $\mathrm{v}=\mathrm{c} / 3$
b) If the two events happen at the same time: $t^{\prime}{ }_{A}=t^{\prime}{ }_{B}$ which means:

$$
\gamma\left(\mathrm{t}_{\mathrm{A}}-\beta \frac{\mathrm{x}_{\mathrm{A}}}{\mathrm{c}}\right)=\gamma\left(\mathrm{t}_{\mathrm{B}}-\beta \frac{\mathrm{x}_{\mathrm{B}}}{\mathrm{c}}\right) \rightarrow \mathrm{t}_{\mathrm{B}}-\beta \frac{\mathrm{x}_{\mathrm{B}}}{\mathrm{c}}=0 \rightarrow \beta=\frac{\mathrm{ct}_{\mathrm{B}}}{\mathrm{x}_{\mathrm{B}}}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}\left(1 \times 10^{-6} \mathrm{~s}\right)}{100 \mathrm{~m}}=3
$$

This means that $\mathrm{v}=3 \mathrm{c}$ which is not possible.

Problem 2.- The frame of reference $\mathrm{K}^{\prime}$ moves with respect to another frame K in the x direction (the $x$ and $x^{\prime}$ axis are parallel) with speed 0.99 c . At $\mathrm{t}=0, \mathrm{t}^{\prime}=0$ and the origins of both frames coincide. Calculate the coordinates in frame $\mathrm{K}^{\prime}$ of an event that happens in frame K at $\mathrm{t}=2 \mathrm{~ns}$, $\mathrm{x}=1 \mathrm{~m}, \mathrm{y}=2 \mathrm{~m}$ and $\mathrm{z}=3 \mathrm{~m}$

## Solution:

Using the Lorentz transformations, we get:
$\beta=\frac{\mathrm{v}}{\mathrm{c}}=0.99 \quad$ and $\quad \gamma=\frac{1}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}}=\frac{1}{\sqrt{1-0.99^{2}}}=7.09$

$$
\begin{aligned}
& \mathrm{x}^{\prime}=7.09(1 \mathrm{~m}-0.99(0.6 \mathrm{~m}))=2.9 \mathrm{~m} \\
& \mathrm{y}^{\prime}=2 \mathrm{~m} \\
& \mathrm{z}^{\prime}=3 \mathrm{~m} \\
& \mathrm{t}^{\prime}=\gamma\left(2 \mathrm{~ns}-0.99 \frac{1 \mathrm{~m}}{\mathrm{c}}\right)=-9.2 \mathrm{~ns}
\end{aligned}
$$

Problem 2a.- Frame of reference $\mathrm{K}^{\prime}$ moves with respect to K in the x direction (the x and x ' axis are parallel) with speed 0.96 c . At $\mathrm{t}=0, \mathrm{t}^{\prime}=0$ and the origins of both frames coincide. Calculate the coordinates in frame $\mathrm{K}^{\prime}$ of an event that happens in frame K at $\mathrm{t}=2.8 \mathrm{~ns}, \mathrm{x}=1.4 \mathrm{~m}, \mathrm{y}=3 \mathrm{~m}$ and $\mathrm{z}=4 \mathrm{~m}$

Solution: Calculating $\beta$ and $\gamma$ we get:
$\beta=\frac{\mathrm{v}}{\mathrm{c}}=0.96 \quad$ and $\quad \gamma=\frac{1}{\sqrt{1-0.96^{2}}}=3.57$
In the Lorentz transformation:

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\gamma(\mathrm{x}-\beta \mathrm{ct})=3.57\left(1.4-0.96 \times 3 \times 10^{8} \times 2.8 \times 10^{-9}\right)=2.12 \mathrm{~m} \\
& \mathrm{y}^{\prime}=\mathrm{y}=3 \mathrm{~m} \\
& \mathrm{z}^{\prime}=\mathrm{z}=4 \mathrm{~m} \\
& \mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\beta \frac{\mathrm{x}}{\mathrm{c}}\right)=3.57\left(2.8 \times 10^{-9}-0.96 \times \frac{1.4}{3 \times 10^{8}}\right)=-6 n s
\end{aligned}
$$

Problem 3.- In inertial frame K, two events occur at the same time and 24 c -minutes apart in space. In inertial frame K', the same events occur at 25 c -minutes apart. What is the time interval between the events in $\mathrm{K}^{\prime}$ ?

Solution: Knowing that the space-time interval is an invariant we can write:
$\Delta \mathrm{s}^{2}=\Delta x^{2}-c^{2} \Delta t^{2}=\Delta x^{\prime 2}-c^{2} \Delta t^{\prime 2}$
But $\Delta t=0$ and $\Delta x=24 c \mathrm{~min}$. We also know that $\Delta x^{\prime}=25 \mathrm{c} \mathrm{min}$, so:
$(24 c \mathrm{~min})^{2}-c^{2}(0)^{2}=(25 c \mathrm{~min})^{2}-c^{2} \Delta t^{\prime 2} \rightarrow \Delta t^{\prime}=7 \mathrm{~min}$

Problem 4.- In inertial frame K events 1 and 2 occur at the same time, but 4 kilometers apart on the x -axis. In inertial frame K ', which is moving in the x -direction, the events occur 5 kilometers apart. What is the time difference between the events in K'?

Solution: For the frame of reference where the events are simultaneous, we can write
$X_{1}=0$
$X_{2}=4 \mathrm{~km}$
$t_{1}=0$
$t_{2}=0$

For the other frame of reference, we have:
$X_{1}{ }^{\prime}=0$
$X_{2}{ }^{\prime}=5 \mathrm{~km}$
$t_{1}{ }^{\prime}=0$
$t_{2}{ }^{\prime}=$ ?

The Lorentz transformation for $X_{2}$ is as follows:

$$
X_{2}{ }^{\prime}=\gamma\left(X_{2}-v t_{2}\right)
$$

This allows us to find $\gamma$ :

$$
5 \mathrm{~km}=\gamma(4 \mathrm{~km}-0) \rightarrow \gamma=5 / 4
$$

Knowing gamma allows us to find v :

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \rightarrow v=c \sqrt{1-\frac{1}{\gamma^{2}}} \rightarrow v=0.6 c
$$

Now that we know gamma and $v$, we can calculate $t_{2}{ }^{\prime}$

$$
t_{2}^{\prime}=\frac{5}{4}\left(0-\frac{(0.6 c)(4 k m)}{c^{2}}\right) \rightarrow t_{2}^{\prime}=1 \times 10^{-5} \mathrm{~s}
$$

Problem 5.- In a frame of reference K two events occur as follows:

$$
\begin{array}{ll}
\text { Event1 } & \text { Event2 } \\
\mathrm{x}_{1}=a & \mathrm{x}_{2}=2 a \\
\mathrm{y}_{1}=0 & \mathrm{y}_{2}=0 \\
\mathrm{z}_{1}=0 & \mathrm{z}_{2}=0 \\
\mathrm{t}_{1}=2 a / c & \mathrm{t}_{2}=3 a / 2 c
\end{array}
$$

Find a frame of reference K' where the events happen simultaneously.
Solution: For the events to be simultaneous, we can consider a frame with velocity in the xdirection and write an equation where the times are equal:

$$
\begin{aligned}
& \mathrm{t}_{2}^{\prime}=\gamma\left(\mathrm{t}_{2}-\beta \frac{\mathrm{x}_{2}}{\mathrm{c}}\right)=\mathrm{t}_{1}{ }^{\prime}=\gamma\left(\mathrm{t}_{1}-\beta \frac{\mathrm{x}_{1}}{\mathrm{c}}\right) \\
& \mathrm{t}_{2}-\beta \frac{\mathrm{x}_{2}}{\mathrm{c}}=\mathrm{t}_{1}-\beta \frac{\mathrm{x}_{1}}{\mathrm{c}} \\
& \beta=\frac{\mathrm{t}_{2}-\mathrm{t}_{1}}{\frac{\mathrm{x}_{2}}{\mathrm{c}}-\frac{\mathrm{x}_{1}}{\mathrm{c}}}=-0.5
\end{aligned}
$$

We find that $\mathrm{K}^{\prime}$ should be moving in the negative x -direction with half the speed of light.
Problem 6.- Consider the following scenario: In an inertial frame K , events occur A and B separated in time by $\Delta t$ and in space by $\Delta x$. In another inertial frame $\mathrm{K}^{\prime}$, with velocity $v$ in the x direction relative to $K$, the two events occur at the same time.
Is that possible? If yes, under what conditions?
(A) Not possible
(B) Possible for any values of $\Delta x$ and $\Delta t$
(C) Possible if $|\Delta x / \Delta t|<\mathrm{c}$
(D) Possible if $|\Delta x / \Delta t|>c$
(E) Possible if $|\Delta x / \Delta t|=c$

