Modern Physics

Schrödinger's equation

Problem 1.- Consider the wavefunction for a simple harmonic oscillator:
$\psi=A x e^{-m \omega x^{2} / 2 \hbar}$

Substitute it in the Schrödinger equation (given below) and calculate the energy.
$-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi+\frac{1}{2} m \omega^{2} x^{2} \psi=E \psi$

Solution: The derivatives are:
$\frac{d \psi}{d x}=A e^{-m a x^{2} / 2 \hbar}-A m \omega x^{2} / \hbar e^{-\max ^{2} / 2 \hbar}$
$\frac{d^{2} \psi}{d x^{2}}=-A m \omega x / \hbar e^{-m \omega x^{2} / 2 \hbar}-2 A m \omega x / \hbar e^{-m \omega x^{2} / 2 \hbar}+A m^{2} \omega^{2} x^{3} / \hbar^{2} e^{-m \omega x^{2} / 2 \hbar}$
$\frac{d^{2} \psi}{d x^{2}}=\frac{A m \omega x}{\hbar}\left(-3+m x^{2} \omega / \hbar\right) e^{-m a x^{2} / 2 \hbar}$
Substituting in the Schrödinger equation:
$-\frac{\hbar^{2}}{2 m} \frac{A m \omega x}{\hbar}\left(-3+m x^{2} \omega / \hbar\right) e^{-m \omega x^{2} / 2 \hbar}+\frac{1}{2} m \omega^{2} x^{2} A x e^{-m \omega x^{2} / 2 \hbar}=E A x e^{-m \omega x^{2} / 2 \hbar}$
Simplifying:

$$
\begin{aligned}
& \frac{3 \hbar^{2}}{2 m} \frac{m \omega}{\hbar}-\frac{\hbar^{2}}{2 m} \frac{m \omega^{2}}{\hbar}\left(m x^{2} / \hbar\right)+\frac{1}{2} m \omega^{2} x^{2}=E \\
& \frac{3 \hbar}{2} \frac{\omega}{1}-\frac{\hbar}{2} \frac{\omega^{2}}{1}\left(m x^{2} / \hbar\right)+\frac{1}{2} m \omega^{2} x^{2}=E \rightarrow E=\frac{3}{2} \hbar \omega
\end{aligned}
$$

Problem 1a.- The wavefunction $\psi_{1}=A x e^{-\alpha x^{2} / 2}$ satisfies the Schrödinger equation (independent of time) for a particle in the potential of a simple harmonic oscillator. The wavefunction and the potential are shown schematically in the figure. Indicate the position(s) where you have the maximum probability of finding the particle.

Solution:

Problem 2.- The wavefunction of the only electron of hydrogen in the first excited state and with quantum numbers $l=0$ and $m_{l}=0$ is given (in spherical coordinates) by the formula:
$\psi=\frac{1}{4 \sqrt{2 \pi} a^{3 / 2}}\left[2-\frac{r}{a}\right] e^{-r / 2 a}$, where "a" is the Bohr radius
Find the places where the probability of finding the electron is zero.

Solution: The probability of finding a particle is proportional to the wavefunction squared:
$P \alpha|\psi|^{2}=\frac{1}{32 \pi a^{3}}\left[2-\frac{r}{a}\right]^{2} e^{-r / a}$
We notice that this probability is zero when $r=2 a$ and when $r \rightarrow \infty$

Problem 3.- The wavefunction of a free electron (free means $\mathrm{V}=0$) is given by:

$$
\Psi(\mathrm{x})=\mathrm{Ce}^{-\mathrm{i} 2 \pi \mathrm{x} 1.5 \mathrm{~nm}}
$$

Calculate its kinetic energy.
Solution: Replacing this wavefunction in Schrödinger's equation we get:
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\left(C e^{-i 2 \pi x / 1.5 n m}\right)+V(x)\left(C e^{-i 2 \pi x / 1.5 n m}\right)=E\left(C e^{-i 2 \pi x / 1.5 n m}\right)$
But the particle is free, so the potential is zero: $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\left(C e^{-i 2 \pi / 1.5 n m}\right)=E\left(C e^{-i 2 \pi / 1.5 n m}\right)$, which means that:

$$
E=\frac{-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\left(C e^{-i 2 \pi x / 1.5 n m}\right)}{\left(C e^{-i 2 \pi / / 1.5 n m}\right)}=-\frac{\hbar^{2}}{2 m}\left(\frac{-i 2 \pi}{1.5 n m}\right)^{2}=\frac{4 \pi^{2} \hbar^{2}}{2 m(1.5 n m)^{2}}
$$

With the values of mass and Planck's constant, we get:
$E=\frac{\left(6.62 \times 10^{-34} \mathrm{Js}\right)^{2}}{2\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(1.5 \times 10^{-9} \mathrm{~m}\right)^{2}}=\mathbf{1 . 0 7} \times \mathbf{1 0}^{-19} \mathrm{~J}$

Problem 3a.- The wavefunction of a free electron is given by:
$\Psi(\mathrm{x}, \mathrm{t})=\mathrm{C} \sin \left(\frac{2 \pi \mathrm{x}}{1.54 \mathrm{~nm}}\right)$
Calculate its kinetic energy.
Solution: The wavelength of the electron is 1.54 nm , we can use that to calculate the momentum and energy:

$$
p=\frac{h}{\lambda} \rightarrow K . E .=\frac{p^{2}}{2 m}=\frac{h^{2}}{2 m \lambda^{2}}=\frac{\left(6.62 \times 10^{-34} \mathrm{Js}\right)^{2}}{2\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(1.54 \times 10^{-9} \mathrm{~m}\right)^{2}}=\mathbf{1 . 0 1 5} \times 10^{-19} \mathrm{~J}
$$

Problem 4.- How would the wavefunction look like for a particle with energy E in a potential V as follows:

Problem 5.- Given an electron whose wavefunction at $\mathrm{t}=0$ is:
$\Psi(x, 0)=A \sin (x)+\frac{A}{2} \sin (2 x)$
Find the places in the range $[0,2 \pi]$ where the electron will not be found and the places where we will have the maximum probability of finding it at $\mathrm{t}=0$.

