
Modern Physics 

Schrödinger’s equation 
 

Problem 1.- Consider the wavefunction for a simple harmonic oscillator: 
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Substitute it in the Schrödinger equation (given below) and calculate the energy. 
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Solution: The derivatives are: 
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Substituting in the Schrödinger equation: 
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Simplifying: 
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Problem 1a.- The wavefunction 2/

1

2
x

Axe
αψ −= satisfies the Schrödinger equation (independent 

of time) for a particle in the potential of a simple harmonic oscillator. The wavefunction and the 

potential are shown schematically in the figure. Indicate the position(s) where you have the 

maximum probability of finding the particle. 

 

Solution: 

 
 

Problem 2.- The wavefunction of the only electron of hydrogen in the first excited state and with 

quantum numbers l = 0 and ml = 0 is given (in spherical coordinates) by the formula: 
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ψ , where “a” is the Bohr radius 

Find the places where the probability of finding the electron is zero. 

 

 

Solution: The probability of finding a particle is proportional to the wavefunction squared: 
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We notice that this probability is zero when r=2a and when ∞→r  

 

 

Problem 3.- The wavefunction of a free electron (free means V=0) is given by: 
x/1.5nm-i2CeΨ(x) π=  

Calculate its kinetic energy.  

 

Solution: Replacing this wavefunction in Schrödinger’s equation we get: 
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But the particle is free, so the potential is zero: ( ) ( )nmxinmxi
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means that: 
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With the values of mass and Planck’s constant, we get: 
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Problem 3a.- The wavefunction of a free electron is given by: 
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Calculate its kinetic energy.  

 

Solution: The wavelength of the electron is 1.54 nm, we can use that to calculate the momentum 

and energy: 
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Problem 4.- How would the wavefunction look like for a particle with energy E in a potential V 

as follows: 

 
 

Problem 5.- Given an electron whose wavefunction at t=0 is: 
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Find the places in the range [0, 2π] where the electron will not be found and the places where we 

will have the maximum probability of finding it at t=0. 

 


