Modern Physics

Tunnel Effect

If $E>V_{o}: \quad T=\frac{1}{1+\frac{V_{o}^{2} \sin ^{2}(k L)}{4 E\left(E-V_{o}\right)}}$ where $k=\frac{\sqrt{2 m\left(E-V_{o}\right)}}{\hbar}$
If $E<V_{o}: \quad T=\frac{1}{1+\frac{V_{o}^{2} \sinh ^{2}(k L)}{4 E\left(V_{o}-E\right)}}$ where $k=\frac{\sqrt{2 m\left(V_{o}-E\right)}}{\hbar}$

Problem 1.- Suppose a beam of electrons of kinetic energy 4.0 eV approaches a 3.0 eV barrier. Calculate the width of the barrier if there is no reflection.

Solution: The condition for no reflection is: $W=\frac{n \lambda}{2}$, where n is an integer and λ is the de Broglie wavelength in the barrier. We also know that
$p=\frac{h}{\lambda}$, so $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K . E .}}=\frac{h}{\sqrt{2 m(E-V)}}$, so the condition of no reflection becomes:
$W=\frac{n h}{2 \sqrt{2 m(E-V)}}$
With the values of the problem:
$W=\frac{n \times 6.62 \times 10^{-34} \mathrm{Js}}{2 \sqrt{2\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(1.6 \times 10^{-19} \mathrm{~J}\right)}}=\boldsymbol{n} \mathbf{6 . 1 3} \AA$
Problem 2.- Calculate the probability of an electron of kinetic energy 5 eV to tunnel through a 6 eV barrier 1.5 nm in width.

Solution: First, we calculate the wavenumber and then use the tunneling equation to find the probability:

$$
\begin{aligned}
& k=\frac{\sqrt{2 m\left(V_{o}-E\right)}}{\hbar}=\frac{\sqrt{2\left(9.1 \times 10^{31} \mathrm{~kg}\right)(1 \mathrm{eV})}}{1.05 \times 10^{-34} \mathrm{JS}}=\frac{\sqrt{2\left(9.1 \times 10^{31} \mathrm{~kg}\right)\left(1.6 \times 10^{-19} \mathrm{~J}\right)}}{1.05 \times 10^{-34} \mathrm{Js}}=5.14 \times 10^{9} \mathrm{~m}^{-1} \\
& T=\frac{1}{1+\frac{V_{o}^{2} \sinh ^{2}(\mathrm{~kL})}{4 E\left(V_{o}-E\right)}}=\frac{1}{1+\frac{(6 \mathrm{eV})^{2} \sinh ^{2}\left(\left(5.14 \times 10^{9} \mathrm{~m}^{-1}\right)\left(1.5 \times 10^{-9} \mathrm{~m}\right)\right)}{4 \times 5 \mathrm{eV}(6 \mathrm{eV}-5 \mathrm{eV})}}=4.4 \times 10^{-7}
\end{aligned}
$$

So, only about one in two million particles will tunnel through the barrier.
Problem 2a.- Suppose a beam of electrons of kinetic energy 3.0 eV approaches a 4.0 eV barrier that has a width of 0.55 nm . Calculate the probability of the electrons to tunnel to the other side.

Solution: First, we calculate the wavenumber and then use the tunneling equation to find the probability:

$$
\begin{aligned}
& k=\frac{\sqrt{2 m\left(V_{o}-E\right)}}{\hbar}=\frac{\sqrt{2\left(9.1 \times 10^{31} \mathrm{~kg}\right)(1 \mathrm{eV})}}{1.05 \times 10^{-34} \mathrm{Js}}=\frac{\sqrt{2\left(9.1 \times 10^{31} \mathrm{~kg}\right)\left(1.6 \times 10^{-19} \mathrm{~J}\right)}}{1.05 \times 10^{-34} \mathrm{Js}}=5.14 \times 10^{9} \mathrm{~m}^{-1} \\
& T=\frac{1}{1+\frac{V_{o}^{2} \sinh ^{2}(\mathrm{~kL})}{4 E\left(V_{o}-E\right)}}=\frac{1}{1+\frac{(4 e V)^{2} \sinh ^{2}\left(\left(5.14 \times 10^{9} \mathrm{~m}^{-1}\right)\left(0.55 \times 10^{-9} \mathrm{~m}\right)\right)}{4 \times 3 \mathrm{eV}(4 \mathrm{eV}-3 \mathrm{eV})}}=\mathbf{0 . 0 1 0 5}
\end{aligned}
$$

So, just 1% of the particles will tunnel through the barrier.

