Modern Physics

Rotational and vibrational states

Problem 1.- Calculate the wavelength of a photon emitted during the transition from the $l=3$ to the $l=2$ rotational level of the HF molecule.
[For the HF molecule, $B=\frac{\hbar^{2}}{2 I}=4.158 \times 10^{-22} \mathrm{~J}$]
Solution: For the HF molecule, $B=4.158 \times 10^{-22} J$, so the levels involved in the transition are:

$$
\begin{aligned}
& E_{2}=\frac{2(2+1) \hbar^{2}}{2 I}=6 B=2.495 \times 10^{-21} J \\
& E_{3}=\frac{3(3+1) \hbar^{2}}{2 I}=12 B=4.990 \times 10^{-21} J
\end{aligned}
$$

A transition from $l=3$ to $l=2$ will produce a photon of wavelength:

$$
\frac{h c}{\lambda}=E_{3}-E_{2}=\frac{12 \hbar^{2}}{2 I}-\frac{6 \hbar^{2}}{2 I}=6 B \rightarrow \lambda=\frac{h c}{6 B}=\frac{6.62 \times 10^{-34} \mathrm{Js}\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{6\left(4.158 \times 10^{-22} \mathrm{~J}\right)}=79.6 \mu \mathrm{~m}
$$

Problem 1a.- Calculate the first five rotational energy levels of the HF molecule and find the wavelength of a photon emitted from a transition from the $l=4$ to the $l=3$ levels.

Solution: Recall that the rotational kinetic energy can be written as:
$K . E_{\text {rotational }}=\frac{1}{2} I \omega^{2}=\frac{(I \omega)^{2}}{2 I}=\frac{L^{2}}{2 I}$
But in quantum mechanics the angular momentum L is quantized, so:

$$
K . E ._{\text {rotational }}=\frac{l(l+1) \hbar^{2}}{2 I}=l(l+1) \frac{\hbar^{2}}{2 I}=l(l+1) B, \text { where } B=\frac{\hbar^{2}}{2 I}
$$

For the HF molecule $B=4.158 \times 10^{-22} J$, so the first five levels are:
$E_{o}=0$
$E_{1}=\frac{1(1+1) \hbar^{2}}{2 I}=2 B=8.317 \times 10^{-22} J$
$E_{2}=\frac{2(2+1) \hbar^{2}}{2 I}=6 B=2.495 \times 10^{-21} J$
$E_{3}=\frac{3(3+1) \hbar^{2}}{2 I}=12 B=4.990 \times 10^{-21} J$
$E_{4}=\frac{4(4+1) \hbar^{2}}{2 I}=20 B=8.317 \times 10^{-21} \mathrm{~J}$

A transition from $l=4$ to $l=3$ will produce a photon of wavelength:

$$
\frac{h c}{\lambda}=E_{4}-E_{3}=\frac{20 \hbar^{2}}{2 I}-\frac{12 \hbar^{2}}{2 I}=8 B \rightarrow \lambda=\frac{h c}{8 B}=\frac{6.62 \times 10^{-34} J s\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{8\left(4.158 \times 10^{-22} \mathrm{~J}\right)}=\mathbf{5 9 . 7 \mu \mathrm { m }}
$$

Problem 2.- Calculate the first five vibrational energy levels of the HF molecule and find the wavelength of a photon emitted from a transition from the $n=2$ to $n=1$ levels ignoring any rotational effect.

Solution: The vibrational levels are quantized with energies given by $(n+1 / 2) \hbar \omega$ [where $\omega=4.091 \times 10^{14} \mathrm{rad} / \mathrm{s}$ for the HF molecule], so the first five levels are:
$E_{o}=1 / 2 \hbar \omega$
$E_{1}=3 / 2 \hbar \omega$
$E_{2}=5 / 2 \hbar \omega$
$E_{3}=7 / 2 \hbar \omega$
$E_{4}=9 / 2 \hbar \omega$
A transition from $n=2$ to the $n=1$ level will produce a photon of wavelength:

$$
\frac{h c}{\lambda}=E_{2}-E_{1}=5 / 2 \hbar \omega-3 / 2 \hbar \omega=\hbar \omega \rightarrow \lambda=\frac{h c}{\hbar \omega}=\mathbf{2 . 4 2} \mu \mathrm{m}
$$

