Modern Physics

Rutherford model

Problem 1.- If an electron were orbiting a proton with a classical circular orbit of radius 1.2 fm , what would be its kinetic energy? What would be its speed?

Solution: Recall that in the planetary model the kinetic energy is one half the absolute value of the potential energy, so:
K.E. $=\frac{1}{2}\left|\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{4 \pi \varepsilon_{\mathrm{o}} \mathrm{r}}\right|$
so:

$$
K . E .=\frac{(1.602 C)^{2}}{8(3.14159)\left(8.85 \times 10^{-12} \mathrm{Fm}\right)\left(1.2 \times 10^{-15} \mathrm{~m}\right)}=9.61 \times 10^{-14} \mathrm{~J}=0.60 \mathrm{MeV}
$$

This energy is extremely high; it is comparable to the rest energy of the electron (its energy due to its mass mc^{2}).

A naïve calculation (without considering relativity) gives us:

$$
v=\sqrt{2 K . E . / \mathrm{m}}=\sqrt{2\left(9.61 \times 10^{-14} \mathrm{~J}\right) /\left(9.1 \times 10^{-31} \mathrm{~kg}\right)}=4.60 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

This is unreasonable because it is faster than the speed of light.
Problem 2.- If an electron is in the $\mathrm{n}=3$ state and stays there for 10 ns before decaying, how many rotations does it make in that time?
Solution: Recall that the period is given by $T=\frac{2 \pi r}{v}$ and the period is:

$$
\mathrm{T}=\frac{2 \pi \mathrm{r}}{\left(\frac{\mathrm{n} \hbar}{\mathrm{mr}}\right)}=\frac{2 \pi \mathrm{mr}^{2}}{\mathrm{n} \hbar}=\frac{2 \pi \mathrm{~m}\left(\mathrm{n}^{2} \mathrm{a}_{\mathrm{o}}\right)^{2}}{\mathrm{n} \hbar}=\mathrm{n}^{3}\left[\frac{2 \pi \mathrm{ma}_{\mathrm{o}}{ }^{2}}{\hbar}\right]
$$

Given that $\mathrm{n}=3$ we get:

$$
\mathrm{T}=3^{3}\left[\frac{2(3.14159)\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(0.529 \times 10^{-10} \mathrm{~m}\right)^{2}}{1.05 \times 10^{-34} \mathrm{Js}}\right]=4.11 \times 10^{-11} \mathrm{~s}
$$

The number of revolutions will be the time given divided by this period:
Number of revolutions $=\frac{10^{-8} s}{4.11 \times 10^{-11} s}=2.43 \times 10^{6}$

