Modern Physics

Nuclear Reactions

Problem 1.- Complete the nuclear reactions equations that follow, making sure that charge, mass and angular momentum are conserved:

$$^{63}_{29}Cu + ^{2}_{1}H \rightarrow ^{62}_{29}Cu +$$

$${}_{0}^{1}n \rightarrow {}_{1}^{1}H +$$

Solution:

$$^{63}_{29}Cu + ^{2}_{1}H \rightarrow ^{62}_{29}Cu + ^{3}_{1}H$$

$${}_{0}^{1}n \rightarrow {}_{1}^{1}H + {}_{-1}^{0}\beta + {}_{0}^{0}\nu$$

Problem 2.- A sample of radioactive nuclei of a certain element can decay by γ -mission and β -emission. If the half-life for γ -emission is 24 minutes and that for β -emission is 36 minutes, calculate the half-life for the sample.

Solution: Notice that in a differential of time dt the probability of decaying by either of the two possible ways is:

$$P = \lceil 1 - 2^{-dt/24} \rceil + \lceil 1 - 2^{-dt/36} \rceil$$

This can be expressed as

$$P = \left[1 - e^{-\ln(2)dt/24}\right] + \left[1 - e^{-\ln(2)dt/36}\right] \approx \ln(2)dt / 24 + \ln(2)dt / 36$$

Then

$$P \approx \ln(2) \left[\frac{1}{24} + \frac{1}{36} \right] dt$$

Where we can identify the equivalent half-life of the sample

$$t_{1/2} = \frac{1}{\frac{1}{24} + \frac{1}{36}} =$$
14.4 minutes

Problem 3.- What is a possible way for ₄Be⁷ to transform into ₃Li⁷?

- (A) Emitting an alpha particle only
- (B) Emitting an electron only
- (C) Emitting a neutron only
- (D) Emitting a positron only
- (E) Electron capture and emitting a neutrino

Solution: The atomic mass number of the nucleus doesn't change, so alpha emission is not a possible way. The charge changes from 4 to 3 in the nucleus which can happen if an electron is captured or a positron emitted, however either of these two possibilities requires emitting a neutrino to conserve spin, so the correct answer is **E**.

Problem 4.- The main source of the Sun's energy is the result of nuclear fusion Δmc^2 , where the change in mass is between:

- (A) Two hydrogen atoms and one helium atom
- (B) Four hydrogen atoms and one helium atom
- (C) Six hydrogen atoms and two helium atoms
- (D) Three helium atoms and one carbon atom
- (E) Two hydrogen atoms plus two helium atoms and one carbon atom

Solution: The correct answer is **B**.

Problem 5.- When the copper-63 nuclide is bombarded with deuterons, six different transmutations may occur. Complete the equations for these reactions:

(a)
$$_{29}^{63}$$
Cu + $_{1}^{2}$ H \rightarrow ____ + $_{0}^{1}$ n

(b)
$${}_{20}^{63}$$
Cu + ${}_{1}^{2}$ H \rightarrow ____ + ${}_{1}^{1}$ H

(c)
$$_{29}^{63}$$
Cu + $_{1}^{2}$ H $\rightarrow _{30}^{63}$ Zn + 2____

(d)
$$_{29}^{63}$$
Cu + $_{1}^{2}$ H \rightarrow ____ + $_{2}^{4}$ He

(e)
$${}_{29}^{63}$$
Cu + ${}_{1}^{2}$ H \rightarrow ____ + ${}_{1}^{3}$ H

(f)
$$_{29}^{63}$$
Cu + $_{1}^{2}$ H \rightarrow ____

Solution:

(a)
$$_{29}^{63}$$
Cu+ $_{1}^{2}$ H $\rightarrow _{30}^{64}$ Zn+ $_{0}^{1}$ n

(b)
$${}^{63}_{29}\text{Cu} + {}^{2}_{1}\text{H} \rightarrow {}^{64}_{29}\text{Cu} + {}^{1}_{1}\text{H}$$

(c)
$$_{29}^{63}$$
Cu+ $_{1}^{2}$ H $\rightarrow _{30}^{63}$ Zn+ 2_{0}^{1} n

(d)
$$^{63}_{29}$$
Cu+ $^{2}_{1}$ H $\rightarrow ^{61}_{28}$ Ni+ $^{4}_{2}$ He

(e)
$${}_{29}^{63}\text{Cu} + {}_{1}^{2}\text{H} \rightarrow {}_{29}^{62}\text{Cu} + {}_{1}^{3}\text{H}$$

(f)
$$_{29}^{63}$$
Cu+ $_{1}^{2}$ H \rightarrow_{30}^{65} Zn

Problem 6.- Complete the following nuclear decay equations:

(a)
$$^{238}_{92}\text{U} \rightarrow ^{4}_{2}\text{He} + ____$$

(b)
$${}_{6}^{14}C \rightarrow {}_{-1}^{0}e + _{--}$$

(c)
$$^{24}_{12}\text{Mg} \rightarrow __+ ^{20}_{10}\text{Ne}$$

(d)
$$_{27}^{60}$$
Co $\rightarrow _{28}^{60}$ Ni + ____

(e)
$$^{211}_{83}$$
Bi + $^{4}_{2}$ He \rightarrow ____

(f)
$$^{116}_{48}$$
Cd + $^{0}_{-1}$ e \rightarrow ____

(g)
$$_{46}^{101}\text{Pd} + \underline{\hspace{1cm}} \rightarrow _{47}^{101}\text{Ag}$$

(h)
$$^{101}_{46}$$
Pd + ___ $\rightarrow ^{102}_{47}$ Ag

(i)
$$^{235}_{92}\text{U} + ^{0}_{1}\text{e} \rightarrow ^{139}_{56}\text{Ba} + ^{93}_{37}\text{Rb} + 3$$

$$(j)_{1}^{3}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + 2_{\underline{}}$$

Solution:

(a)
$$^{238}_{92}\text{U} \rightarrow ^{4}_{2}\text{He} + ^{234}_{90}\text{Th}$$

(b)
$${}^{14}_{6}C \rightarrow {}^{0}_{-1}e + {}^{14}_{7}N$$

(c)
$$_{12}^{24}$$
Mg \rightarrow_{2}^{4} He $+_{10}^{20}$ Ne

(d)
$${}^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{0}_{-1}\text{e}$$

(e)
$$^{211}_{83}$$
Bi+ $^{4}_{2}$ He $\rightarrow ^{215}_{85}$ At

(f)
$${}^{116}_{48}\text{Cd} + {}^{0}_{-1}\text{e} \rightarrow {}^{116}_{47}\text{Ag}$$

(g)
$$^{101}_{46}$$
Pd+ $^{0}_{1}$ e $\rightarrow ^{101}_{47}$ Ag

(h)
$$^{101}_{46}$$
Pd+ $^{1}_{1}$ H $\rightarrow ^{102}_{47}$ Ag

$$(i)\ _{92}^{235}U+_{1}^{0}e{\rightarrow}_{56}^{139}Ba+_{37}^{93}Rb+3_{0}^{1}n$$

$$(j)_{1}^{3}H+_{1}^{3}H\rightarrow_{2}^{4}He+2_{0}^{1}n$$