Modern Physics

Bohr Model

We could consider a hydrogen atom, but to make it more general, let us consider a nucleus with charge $Z e$ and a single electron. This is sometimes called a "hydrogenic" atom.

The model starts by assuming that the angular momentum is quantized in multiples of \hbar :
$L=n \hbar$
Where n is a positive integer. This assumption has consequences for the energy, the radius of the orbit, and other quantities, as we will see:

Since $L=m v r$ for a circular orbit, we get: $m v r=n \hbar$, but we also know that the coulomb force is the centripetal force, so:

$$
F=\frac{1}{4 \pi \varepsilon_{\circ}} \frac{Z e^{2}}{r^{2}}=m \frac{v^{2}}{r}
$$

We can replace $v=\frac{n \hbar}{m r}$ in the equation above and obtain:

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r^{2}}=m \frac{\left(\frac{n \hbar}{m r}\right)^{2}}{r} \rightarrow r=\frac{n^{2}}{Z} \frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}
$$

So, the radius of the orbit is proportional to the principal quantum number squared and inversely proportional to the charge of the nucleus. This result defines also:
$a=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}=5.3 \times 10^{-11} \mathrm{~m}$
Which is called the Bohr radius.
The electrostatic potential energy is now easy to calculate:
P.E. $=-\frac{1}{4 \pi \varepsilon_{o}} \frac{Z e^{2}}{r}=-\frac{1}{n^{2}} \frac{m Z^{2} e^{4}}{16 \pi^{2} \varepsilon_{\mathrm{o}}^{2} \hbar^{2}}$

The kinetic energy is half this amount, but positive

$$
\text { K.E. }=\frac{1}{2} \frac{1}{4 \pi \varepsilon_{\circ}} \frac{Z e^{2}}{r}=\frac{1}{n^{2}} \frac{m Z^{2} e^{4}}{32 \pi^{2} \varepsilon_{o}^{2} \hbar^{2}}
$$

As consequence, the total energy is negative and equal to:
$E=-\frac{Z^{2}}{n^{2}} \frac{m e^{4}}{32 \pi^{2} \varepsilon_{o}^{2} \hbar^{2}}$
Where the quantity $E_{o}=\frac{m e^{4}}{32 \pi^{2} \varepsilon_{o}^{2} \hbar^{2}}=2.17 \times 10^{-18} \mathrm{~J}=13.6 \mathrm{eV}$
The speed of the electron determined from $\frac{1}{2} m v^{2}=\frac{Z^{2}}{n^{2}} \frac{m e^{4}}{32 \pi^{2} \varepsilon_{o}^{2} \hbar^{2}}$
$v=\frac{Z}{n} \frac{e^{2}}{4 \pi \varepsilon_{0} \hbar}$,
Therefore, the speed is slower for larger quantum numbers and faster for larger nuclear charge. Notice that here we used the non-relativistic version of the kinetic energy.
The quantity: $v_{o}=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar}=2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is the speed of the electron in the ground state.
Also, notice:

$$
\alpha=\frac{v_{o}}{c}=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\frac{2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}} \approx \frac{1}{137}
$$

Which is the fine structure constant.

