Modern Physics

Wien's law

The black body radiation per unit area per unit wavelength is given by the equation:
$R=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda k_{B} T}}-1}$
If we are interested in finding the value of $\lambda_{\text {max }}$, which makes this function a maximum, we can use the usual procedure of taking its derivative and equaling it to zero, as follows.
$\left.\left.\frac{d R}{d \lambda}=-5 \frac{2 \pi h c^{2}}{\lambda^{6}} \frac{1}{e^{\frac{h c}{\lambda k_{B} T}}-1}+\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{h c}{\left(\lambda^{2} k_{B} T\right.} e^{\frac{h c}{\lambda k_{B} T}} e^{\frac{h c}{\lambda k_{B} T}}-1\right)^{2}\right)=0$
$5 e^{\frac{h c}{\lambda k_{B} T}}-5=\frac{h c}{\lambda k_{B} T} e^{\frac{h c}{\lambda k_{B} T}}$
To solve this equation, we could assume that the exponential is much larger than 1 . With this approximation we find that

$$
\lambda_{\max } \approx \frac{h c}{5 k_{B} T}=\frac{2.9 \times 10^{-3} \mathrm{mK}}{T}
$$

A more accurate solution can be found by solving the equation numerically. We change variables to $x=\frac{h c}{\lambda k_{B} T}$ and the equation becomes $5 e^{x}-5=x e^{x}$, which gives $x=4.965$, then we get

$$
\lambda_{\max } \approx \frac{h c}{4.965 k_{B} T}=\frac{2.898 \times 10^{-3} \mathrm{mK}}{T}
$$

